The Strange Logic of Random Graphs


Book Description

The study of random graphs was begun in the 1960s and now has a comprehensive literature. This excellent book by one of the top researchers in the field now joins the study of random graphs (and other random discrete objects) with mathematical logic. The methodologies involve probability, discrete structures and logic, with an emphasis on discrete structures.




Introduction to Random Graphs


Book Description

The text covers random graphs from the basic to the advanced, including numerous exercises and recommendations for further reading.




Random Graphs


Book Description

This is a revised and updated version of the classic first edition.







Random Graphs '83


Book Description

The range of random graph topics covered in this volume includes structure, colouring, algorithms, mappings, trees, network flows, and percolation. The papers also illustrate the application of probability methods to Ramsey's problems, the application of graph theory methods to probability, and relations between games on graphs and random graphs.




Random Graphs


Book Description

A unified, modern treatment of the theory of random graphs-including recent results and techniques Since its inception in the 1960s, the theory of random graphs has evolved into a dynamic branch of discrete mathematics. Yet despite the lively activity and important applications, the last comprehensive volume on the subject is Bollobas's well-known 1985 book. Poised to stimulate research for years to come, this new work covers developments of the last decade, providing a much-needed, modern overview of this fast-growing area of combinatorics. Written by three highly respected members of the discrete mathematics community, the book incorporates many disparate results from across the literature, including results obtained by the authors and some completely new results. Current tools and techniques are also thoroughly emphasized. Clear, easily accessible presentations make Random Graphs an ideal introduction for newcomers to the field and an excellent reference for scientists interested in discrete mathematics and theoretical computer science. Special features include: * A focus on the fundamental theory as well as basic models of random graphs * A detailed description of the phase transition phenomenon * Easy-to-apply exponential inequalities for large deviation bounds * An extensive study of the problem of containing small subgraphs * Results by Bollobas and others on the chromatic number of random graphs * The result by Robinson and Wormald on the existence of Hamilton cycles in random regular graphs * A gentle introduction to the zero-one laws * Ample exercises, figures, and bibliographic references




Large Deviations for Random Graphs


Book Description

This book addresses the emerging body of literature on the study of rare events in random graphs and networks. For example, what does a random graph look like if by chance it has far more triangles than expected? Until recently, probability theory offered no tools to help answer such questions. Important advances have been made in the last few years, employing tools from the newly developed theory of graph limits. This work represents the first book-length treatment of this area, while also exploring the related area of exponential random graphs. All required results from analysis, combinatorics, graph theory and classical large deviations theory are developed from scratch, making the text self-contained and doing away with the need to look up external references. Further, the book is written in a format and style that are accessible for beginning graduate students in mathematics and statistics.




Graphical Evolution


Book Description

Probability models for graphs; Models a, b and c; Expection; properties of almost all graphs Threshold functions; The evolution randon graphs; A threshold for isolated vertices; A sharper threshold; Threshold for existence; Selected highlights.




Random Graphs, Geometry and Asymptotic Structure


Book Description

The theory of random graphs is a vital part of the education of any researcher entering the fascinating world of combinatorics. However, due to their diverse nature, the geometric and structural aspects of the theory often remain an obscure part of the formative study of young combinatorialists and probabilists. Moreover, the theory itself, even in its most basic forms, is often considered too advanced to be part of undergraduate curricula, and those who are interested usually learn it mostly through self-study, covering a lot of its fundamentals but little of the more recent developments. This book provides a self-contained and concise introduction to recent developments and techniques for classical problems in the theory of random graphs. Moreover, it covers geometric and topological aspects of the theory and introduces the reader to the diversity and depth of the methods that have been devised in this context.




Introduction to Random Graphs


Book Description

From social networks such as Facebook, the World Wide Web and the Internet, to the complex interactions between proteins in the cells of our bodies, we constantly face the challenge of understanding the structure and development of networks. The theory of random graphs provides a framework for this understanding, and in this book the authors give a gentle introduction to the basic tools for understanding and applying the theory. Part I includes sufficient material, including exercises, for a one semester course at the advanced undergraduate or beginning graduate level. The reader is then well prepared for the more advanced topics in Parts II and III. A final part provides a quick introduction to the background material needed. All those interested in discrete mathematics, computer science or applied probability and their applications will find this an ideal introduction to the subject.