The Strength of Nonstandard Analysis


Book Description

This book reflects the progress made in the forty years since the appearance of Abraham Robinson’s revolutionary book Nonstandard Analysis in the foundations of mathematics and logic, number theory, statistics and probability, in ordinary, partial and stochastic differential equations and in education. The contributions are clear and essentially self-contained.




Nonstandard Models of Arithmetic and Set Theory


Book Description

This is the proceedings of the AMS special session on nonstandard models of arithmetic and set theory held at the Joint Mathematics Meetings in Baltimore (MD). The volume opens with an essay from Haim Gaifman that probes the concept of non-standardness in mathematics and provides a fascinating mix of historical and philosophical insights into the nature of nonstandard mathematical structures. In particular, Gaifman compares and contrasts the discovery of nonstandard models with other key mathematical innovations, such as the introduction of various number systems, the modern concept of function, and non-Euclidean geometries. Other articles in the book present results related to nonstandard models in arithmetic and set theory, including a survey of known results on the Turing upper bounds of arithmetic sets and functions. The volume is suitable for graduate students and research mathematicians interested in logic, especially model theory.




How To Measure The Infinite: Mathematics With Infinite And Infinitesimal Numbers


Book Description

'This text shows that the study of the almost-forgotten, non-Archimedean mathematics deserves to be utilized more intently in a variety of fields within the larger domain of applied mathematics.'CHOICEThis book contains an original introduction to the use of infinitesimal and infinite numbers, namely, the Alpha-Theory, which can be considered as an alternative approach to nonstandard analysis.The basic principles are presented in an elementary way by using the ordinary language of mathematics; this is to be contrasted with other presentations of nonstandard analysis where technical notions from logic are required since the beginning. Some applications are included and aimed at showing the power of the theory.The book also provides a comprehensive exposition of the Theory of Numerosity, a new way of counting (countable) infinite sets that maintains the ancient Euclid's Principle: 'The whole is larger than its parts'. The book is organized into five parts: Alpha-Calculus, Alpha-Theory, Applications, Foundations, and Numerosity Theory.




Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory


Book Description

The goal of this monograph is to give an accessible introduction to nonstandard methods and their applications, with an emphasis on combinatorics and Ramsey theory. It includes both new nonstandard proofs of classical results and recent developments initially obtained in the nonstandard setting. This makes it the first combinatorics-focused account of nonstandard methods to be aimed at a general (graduate-level) mathematical audience. This book will provide a natural starting point for researchers interested in approaching the rapidly growing literature on combinatorial results obtained via nonstandard methods. The primary audience consists of graduate students and specialists in logic and combinatorics who wish to pursue research at the interface between these areas.




Lectures on the Philosophy of Mathematics


Book Description

An introduction to the philosophy of mathematics grounded in mathematics and motivated by mathematical inquiry and practice. In this book, Joel David Hamkins offers an introduction to the philosophy of mathematics that is grounded in mathematics and motivated by mathematical inquiry and practice. He treats philosophical issues as they arise organically in mathematics, discussing such topics as platonism, realism, logicism, structuralism, formalism, infinity, and intuitionism in mathematical contexts. He organizes the book by mathematical themes--numbers, rigor, geometry, proof, computability, incompleteness, and set theory--that give rise again and again to philosophical considerations.




Analysis


Book Description

Providing an introduction to real analysis, this text is suitable for honours undergraduates. It starts at the very beginning - the construction of the number systems and set theory, then to the basics of analysis, through to power series, several variable calculus and Fourier analysis, and finally to the Lebesgue integral.




Handbook of Analysis and Its Foundations


Book Description

Handbook of Analysis and Its Foundations is a self-contained and unified handbook on mathematical analysis and its foundations. Intended as a self-study guide for advanced undergraduates and beginning graduatestudents in mathematics and a reference for more advanced mathematicians, this highly readable book provides broader coverage than competing texts in the area. Handbook of Analysis and Its Foundations provides an introduction to a wide range of topics, including: algebra; topology; normed spaces; integration theory; topological vector spaces; and differential equations. The author effectively demonstrates the relationships between these topics and includes a few chapters on set theory and logic to explain the lack of examples for classical pathological objects whose existence proofs are not constructive. More complete than any other book on the subject, students will find this to be an invaluable handbook. Covers some hard-to-find results including: Bessagas and Meyers converses of the Contraction Fixed Point Theorem Redefinition of subnets by Aarnes and Andenaes Ghermans characterization of topological convergences Neumanns nonlinear Closed Graph Theorem van Maarens geometry-free version of Sperners Lemma Includes a few advanced topics in functional analysis Features all areas of the foundations of analysis except geometry Combines material usually found in many different sources, making this unified treatment more convenient for the user Has its own webpage: http://math.vanderbilt.edu/




Compactness and Contradiction


Book Description

There are many bits and pieces of folklore in mathematics that are passed down from advisor to student, or from collaborator to collaborator, but which are too fuzzy and nonrigorous to be discussed in the formal literature. Traditionally, it was a matter




Hilbert's Fifth Problem and Related Topics


Book Description

In the fifth of his famous list of 23 problems, Hilbert asked if every topological group which was locally Euclidean was in fact a Lie group. Through the work of Gleason, Montgomery-Zippin, Yamabe, and others, this question was solved affirmatively; more generally, a satisfactory description of the (mesoscopic) structure of locally compact groups was established. Subsequently, this structure theory was used to prove Gromov's theorem on groups of polynomial growth, and more recently in the work of Hrushovski, Breuillard, Green, and the author on the structure of approximate groups. In this graduate text, all of this material is presented in a unified manner, starting with the analytic structural theory of real Lie groups and Lie algebras (emphasising the role of one-parameter groups and the Baker-Campbell-Hausdorff formula), then presenting a proof of the Gleason-Yamabe structure theorem for locally compact groups (emphasising the role of Gleason metrics), from which the solution to Hilbert's fifth problem follows as a corollary. After reviewing some model-theoretic preliminaries (most notably the theory of ultraproducts), the combinatorial applications of the Gleason-Yamabe theorem to approximate groups and groups of polynomial growth are then given. A large number of relevant exercises and other supplementary material are also provided.




Nonstandard Analysis, Axiomatically


Book Description

In the aftermath of the discoveries in foundations of mathematiC's there was surprisingly little effect on mathematics as a whole. If one looks at stan dard textbooks in different mathematical disciplines, especially those closer to what is referred to as applied mathematics, there is little trace of those developments outside of mathematical logic and model theory. But it seems fair to say that there is a widespread conviction that the principles embodied in the Zermelo - Fraenkel theory with Choice (ZFC) are a correct description of the set theoretic underpinnings of mathematics. In most textbooks of the kind referred to above, there is, of course, no discussion of these matters, and set theory is assumed informally, although more advanced principles like Choice or sometimes Replacement are often mentioned explicitly. This implicitly fixes a point of view of the mathemat ical universe which is at odds with the results in foundations. For example most mathematicians still take it for granted that the real number system is uniquely determined up to isomorphism, which is a correct point of view as long as one does not accept to look at "unnatural" interpretations of the membership relation.