The Structural Foundations of Quantum Gravity


Book Description

Quantum gravity is the name given to a theory that unites general relativity - Einstein's theory of gravitation and spacetime - with quantum field theory, our framework for describing non-gravitational forces. The Structural Foundations of Quantum Gravity brings together philosophers and physicists to discuss a range of conceptual issues that surface in the effort to unite these theories, focusing in particular on the ontological nature of the spacetime that results. Although there has been a great deal written about quantum gravity from the perspective of physicists and mathematicians, very little attention has been paid to the philosophical aspects. This volume closes that gap, with essays written by some of the leading researchers in the field. Individual papers defend or attack a structuralist perspective on the fundamental ontologies of our physical theories, which offers the possibility of shedding new light on a number of foundational problems. It is a book that will be of interest not only to physicists and philosophers of physics but to anyone concerned with foundational issues and curious to explore new directions in our understanding of spacetime and quantum physics.




The Structural Foundations of Quantum Gravity


Book Description

What is spacetime? General relativity and quantum field theory answer this question in different ways. This collection of essays looks at the problem of uniting these two fundamental theories of our world, focusing on the nature of space and time within this quantum framework.




Beyond Spacetime


Book Description

A collection of essays discussing the philosophy and foundations of quantum gravity. Written by leading philosophers and physicists in the field, chapters cover the important conceptual questions in the search for a quantum theory of gravity, and the current state of understanding among philosophers and physicists.




Quantum Gravity in 2+1 Dimensions


Book Description

The first comprehensive survey of (2+1)-dimensional quantum gravity - for graduate students and researchers.




Symmetry, Structure, and Spacetime


Book Description

In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational structure is what the physics is about. · Unified treatment of gauge symmetries and their relationship to ontology in physics · Brings philosophy of space and time into step with developments in modern physics · Argues against the received view on the implications of symmetries in physics · Provides elementary treatments of technical issues · Illustrates a novel defense of structuralism







Modern Canonical Quantum General Relativity


Book Description

This book provides a complete treatise of the canonical quantisation of general relativity and the loop quantum gravity theory. Mathematical concepts are provided, so it can be read by graduate students with a basic knowledge of quantum field theory or general relativity.




Foundations of Quantum Mechanics


Book Description

Authored by an acclaimed teacher of quantum physics and philosophy, this textbook pays special attention to the aspects that many courses sweep under the carpet. Traditional courses in quantum mechanics teach students how to use the quantum formalism to make calculations. But even the best students - indeed, especially the best students - emerge rather confused about what, exactly, the theory says is going on, physically, in microscopic systems. This supplementary textbook is designed to help such students understand that they are not alone in their confusions (luminaries such as Albert Einstein, Erwin Schroedinger, and John Stewart Bell having shared them), to sharpen their understanding of the most important difficulties associated with interpreting quantum theory in a realistic manner, and to introduce them to the most promising attempts to formulate the theory in a way that is physically clear and coherent. The text is accessible to students with at least one semester of prior exposure to quantum (or "modern") physics and includes over a hundred engaging end-of-chapter "Projects" that make the book suitable for either a traditional classroom or for self-study.




Quantum Thermodynamics


Book Description

This book provides an introduction to the emerging field of quantum thermodynamics, with particular focus on its relation to quantum information and its implications for quantum computers and next generation quantum technologies. The text, aimed at graduate level physics students with a working knowledge of quantum mechanics and statistical physics, provides a brief overview of the development of classical thermodynamics and its quantum formulation in Chapter 1. Chapter 2 then explores typical thermodynamic settings, such as cycles and work extraction protocols, when the working material is genuinely quantum. Finally, Chapter 3 explores the thermodynamics of quantum information processing and introduces the reader to some more state of-the-art topics in this exciting and rapidly developing research field.




Physics Meets Philosophy at the Planck Scale


Book Description

Was the first book to examine the exciting area of overlap between philosophy and quantum mechanics with chapters by leading experts from around the world.