The Structure of Relation Algebras Generated by Relativizations


Book Description

The foundation of an algebraic theory of binary relations was laid by De Morgan, Peirce, and Schroder during the second half of the nineteenth century. Modern development of the subject as a theory of abstract algebras, called "relation algebras", was undertaken by Tarski and his students. This book aims to analyse the structure of relation algebras that are generated by relativized subalgebras. As examples of their potential for applications, the main results are used to establish representation theorems for classes of relation algebras and to prove existence and uniqueness theorems for simple closures (i.e., for minimal simple algebras containing a given family of relation algebras as relativized subalgebras). This book is well-written and accessible to those who are not specialists in this area. In particular, it contains two introductory chapters on the arithmetic and the algebraic theory of relation algebras. This book is suitable for use in graduate courses onalgebras of binary relations or algebraic logic.




Simple Relation Algebras


Book Description

This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatment in author Steven Givant’s textbook, Introduction to Relation Algebras (Springer, 2017).




Decision Problems for Equational Theories of Relation Algebras


Book Description

"We prove that any variety of relation algebras which contains an algebra with infinitely many elements below the identity, or which contains the full group relation algebra on some infinite group (or on arbitrarily large finite groups), must have an undecidable equational theory. Then we construct an embedding of the lattice of all subsets of the natural numbers into the lattice of varieties of relation algebras such that the variety correlated with a set [italic capital]X of natural numbers has a decidable equational theory if and only if [italic capital]X is a decidable (i.e., recursive) set. Finally, we construct an example of an infinite, finitely generated, simple, representable relation algebra that has a decidable equational theory.'' -- Abstract.




Relations: Concrete, Abstract, And Applied - An Introduction


Book Description

The book is intended as an invitation to the topic of relations on a rather general basis. It fills the gap between the basic knowledge offered in countless introductory papers and books (usually comprising orders and equivalences) and the highly specialized monographs on mainly relation algebras, many-valued (fuzzy) relations, or graphs. This is done not only by presenting theoretical results but also by giving hints to some of the many interesting application areas (also including their respective theoretical basics).This book is a new — and the first of its kind — compilation of known results on binary relations. It offers relational concepts in both reasonable depth and broadness, and also provides insight into the vast diversity of theoretical results as well as application possibilities beyond the commonly known examples.This book is unique by the spectrum of the topics it handles. As indicated in its title these are:




Relational Methods in Computer Science


Book Description

The calculus of relations has been an important component of the development of logic and algebra since the middle of the nineteenth century, when Augustus De Morgan observed that since a horse is an animal we should be able to infer that the head of a horse is the head of an animal. For this, Aristotelian syllogistic does not suffice: We require relational reasoning. George Boole, in his Mathematical Analysis of Logic of 1847, initiated the treatment of logic as part of mathematics, specifically as part of algebra. Quite the opposite conviction was put forward early this century by Bertrand Russell and Alfred North Whitehead in their Principia Mathematica (1910 - 1913): that mathematics was essentially grounded in logic. Logic thus developed in two streams. On the one hand algebraic logic, in which the calculus of relations played a particularly prominent part, was taken up from Boole by Charles Sanders Peirce, who wished to do for the "calculus of relatives" what Boole had done for the calculus of sets. Peirce's work was in turn taken up by Schroder in his Algebra und Logik der Relative of 1895 (the third part of a massive work on the algebra of logic). Schroder's work, however, lay dormant for more than 40 years, until revived by Alfred Tarski in his seminal paper "On the calculus of binary relations" of 1941 (actually his presidential address to the Association for Symbolic Logic).




Handbook of Philosophical Logic


Book Description

It is with great pleasure that we are presenting to the community the second edition of this extraordinary handbook. It has been over 15 years since the publication of the first edition and there have been great changes in the landscape of philosophical logic since then. The first edition has proved invaluable to generations of students and researchers in formal philosophy and language, as weIl as to consumers of logic in many applied areas. The main logic artiele in the Encyelopaedia Britannica 1999 has described the first edition as 'the best starting point for exploring any of the topics in logic'. We are confident that the second edition will prove to be just as good. ! The first edition was the second handbook published for the logic commu nity. It followed the North Holland one volume Handbook 0/ Mathematical Logic, published in 1977, edited by the late Jon Barwise. The four volume Handbook 0/ Philosophical Logic, published 1983-1989 came at a fortunate at the evolution of logic. This was the time when logic temporal junction was gaining ground in computer science and artificial intelligence cireles. These areas were under increasing commercial pressure to provide devices which help andjor replace the human in his daily activity. This pressure required the use of logic in the modelling of human activity and organisa tion on the one hand and to provide the theoretical basis for the computer program constructs on the other.




A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences


Book Description

This volume presents a short guide to the extensive literature concerning semir ings along with a complete bibliography. The literature has been created over many years, in variety of languages, by authors representing different schools of mathematics and working in various related fields. In many instances the terminology used is not universal, which further compounds the difficulty of locating pertinent sources even in this age of the Internet and electronic dis semination of research results. So far there has been no single reference that could guide the interested scholar or student to the relevant publications. This book is an attempt to fill this gap. My interest in the theory of semirings began in the early sixties, when to gether with Bogdan W ~glorz I tried to investigate some algebraic aspects of compactifications of topological spaces, semirings of semicontinuous functions, and the general ideal theory for special semirings. (Unfortunately, local alge braists in Poland told me at that time that there was nothing interesting in investigating semiring theory because ring theory was still being developed). However, some time later we became aware of some similar investigations hav ing already been done. The theory of semirings has remained "my first love" ever since, and I have been interested in the results in this field that have been appearing in literature (even though I have not been active in this area myself).




$C^*$-Algebras: 1943-1993


Book Description




Lie Algebras, Cohomology, and New Applications to Quantum Mechanics


Book Description

This volume, which contains a good balance of research and survey papers, presents at look at some of the current development in this extraordinarily rich and vibrant area.




Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra


Book Description

This volume contains refereed papers on themes explored at the AMS-IMS-SIAM Summer Research Conference, Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra, held at Mount Holyoke College in 1992. The conference featured a series of one-hour invited lectures on recent advances in commutative algebra and interactions with such areas as algebraic geometry, representation theory, and combinatorics. The major themes of the conference were tight closure Hilbert functions, birational algebra, free resolutions and the homological conjectures, Rees algebras, and local cohomology. With contributions by several leading experts in the field, this volume provides an excellent survey of current research in commutative algebra.