Tectonic Aspects of the Alpine-Dinaride-Carpathian System


Book Description

The Alps, Carpathians and Dinarides form a complex, highly curved and strongly coupled orogenic system. Motions of the European and Adriatic plates gave birth to a number of 'oceans' and microplates that led to several distinct stages of collision. Although the Alps serve as a classical example of collisional orogens, it becomes clearer that substantial questions on their evolution can only be answered in the Carpathians and Dinarides. Our understanding of the geodynamic evolution of the Alpine-Dinaride-Carpathian System has substantially improved and will continue to develop; this is thanks to collaboration between eastern and western Europe, but also due to the application of new methods and the launch of research initiatives. The largely field-based contributions investigate the following subjects: pre-Alpine heritage and Alpine reactivation; Mesozoic palaeogeography and Alpine subduction and collision processes; extrusion tectonics from the Eastern Alps to the Carpathians and the Pannonian Basin; orogen-parallel and orogen-perpendicular extension; record of orogeny in foreland basins; tectonometamorphic evolution; and relations between the Alps, Apennines and Corsica.




Orogenic Processes in the Alpine Collision Zone


Book Description

This book covers a multitude of Alpine-type working areas and processes active in collisional mountain building in the form of 16 selected very up-to-date review and research articles covering the Alps, Carpathians and Dinarides. These data were presented at the 8th workshop on Alpine Geological Studies in Davos held in October 2007. The compilations and new data are of interest to earth scientists interested in mountain building in general and those interested in processes of continental collision in particular. The book is virtually indispensable for advanced students and scientists involved in Alpine studies.




Ultrahigh Pressure Metamorphism


Book Description










The Geology of Central Europe: Mesozoic and Cenozoic


Book Description

Volume 2 provides an overview of the Mesozoic and Cenozoic evolution of Central Europe. This period commenced with the destruction of Pangaea and ended with the formation of the Alps and Carpathians and the subsequent Ice Ages. Separate summary chapters on the Permian to Cretaceous tectonics and the Alpine evolution are also included. The final chapter provides an overview of the fossils fuels, ore and industrial minerals in the region.




Himalayan Tectonics


Book Description

The Himalaya–Karakoram–Tibet mountain belt resulted from Cenozoic collision of India and Asia and is frequently used as the type example of a continental collision orogenic belt. The last quarter of a century has seen the publication of a remarkably detailed dataset relevant to the evolution of this belt. Detailed fieldwork backed up by state-of-the-art structural analysis, geochemistry, mineral chemistry, igneous and metamorphic petrology, isotope chemistry, sedimentology and geophysics produced a wide-ranging archive of data-rich scientific papers. The rationale for this book is to provide a coherent overview of these datasets in addressing the evolution of the mountain ranges we see today. This volume comprises 21 specially invited review papers on the Himalaya, Kohistan arc, Tibet, the Karakoram and Pamir ranges. These papers span the history of Himalayan research, chronology of the collision, stratigraphy, magmatic and metamorphic processes, structural geology and tectonics, seismicity, geophysics, and the evolution of the Indian monsoon. This landmark set of papers should underpin the next 25 years of Himalayan research.







Folding and Fracturing of Rocks


Book Description

Folding and Fracturing of Rocks was first published in 1967. It was one of the first major publications aimed at developing for geologists the basic theory of stress and strain in mathematical terms and explaining how this theory could be used to solve practical problems in structural geology and tectonics. Although out-of-print for many years, it is still one of the most frequently cited and quoted texts in modern research publications in structural geology. Although texts discussing the basic theory of stress and strain had been long available in engineering, metallurgic and materials science, very few of these texts made any reference to the application of these principles to the study of rock strain, fracturing and folding processes commonly arising in geology. Folding and Fracturing of Rocks developed the theory of both small and large finite strain with particular emphasis on progressive deformation and its geological implications for the development of the structures actually observed in naturally deformed rocks. It was one of the first textbooks to discuss the practical methods for evaluating the states of finite strain in two and three dimensions and the implications of these methods to further our understanding of structural geometry. The book set out the concepts of displacement and finite strain and showed how strain states could be represented in diagrammatic forms as originally devised by Otto Mohr for states of stress. Many of the developments were novel at the time of publication and have had major applications in subsequent research. The discussions and methods of strain analysis set out in Folding and Fracturing of Ricks have stood the test of time and many of the subsequent research developments in structural geology have their origins in this book. The reasons for the relevance of this book to current research are first, the book is based on sound mathematical principles that have not become dated and second, the discussions of deformation theory are illustrated with many photographs of the structures seen in naturally deformed rocks. The author has always been of the opinion that the structures actually observed in naturally formed rocks form the key to our understanding of tectonic processes and that the development of mechanical models for the origin of these structures must always be compared with natural systems if they are to be truly relevant. John Ramsay was born in London in 1931. He did his doctoral research in the Scottish Highlands working on the deformation patterns seen in complexly folded rocks of the Moine Series and the relationships seen in folded basement and cover rocks obtaining his Ph.D. in 1954. After undertaking his military service in the Corps of the Royal Engineers (as Violoncellist and Tenor drummer) he was appointed to the teaching staff of Imperial College in 1957. Subsequently he held Professorships at London University and Leeds University. In 1977, he was appointed to a Professorship of Geology at the Eidgen ssische Technische Hochschule and University of Z rich, Switzerland. John Ramsay has been author and co-author of four books and many papers in structural geology. His work in advancing structural geology has been recognized by the awards of the Bigsby and Wollaston medals of the Geological Society, the Prestwich Medal of the Soci t G ologique de France, the Holmes Medal of the European Union of Geosciences, the Tranenster Medal of the University of Li ge, and in 1992 he was appointed to the Order of Commander of the British Empire in the Queen's Honours list.




Earth Processes


Book Description

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 95. Publication of this monograph will coincide, to a precision of a few per mil, with the centenary of Henri Becquerel's discovery of "radiations actives" (C. R. Acad. Sci., Feb. 24, 1896). In 1896 the Earth was only 40 million years old according to Lord Kelvin. Eleven years later, Boltwood had pushed the Earth's age past 2000 million years, based on the first U/Pb chemical dating results. In exciting progression came discovery of isotopes by J. J. Thomson in 1912, invention of the mass spectrometer by Dempster (1918) and Aston (1919), the first measurement of the isotopic composition of Pb (Aston, 1927) and the final approach, using Pb-Pb isotopic dating, to the correct age of the Earth: close-2.9 Ga (Gerling, 1942), closer-3.0 Ga (Holmes, 1949) and closest-4.50 Ga (Patterson, Tilton and Inghram, 1953).