Orogenic Processes in the Alpine Collision Zone


Book Description

This book covers a multitude of Alpine-type working areas and processes active in collisional mountain building in the form of 16 selected very up-to-date review and research articles covering the Alps, Carpathians and Dinarides. These data were presented at the 8th workshop on Alpine Geological Studies in Davos held in October 2007. The compilations and new data are of interest to earth scientists interested in mountain building in general and those interested in processes of continental collision in particular. The book is virtually indispensable for advanced students and scientists involved in Alpine studies.




Tectonic Aspects of the Alpine-Dinaride-Carpathian System


Book Description

The Alps, Carpathians and Dinarides form a complex, highly curved and strongly coupled orogenic system. Motions of the European and Adriatic plates gave birth to a number of 'oceans' and microplates that led to several distinct stages of collision. Although the Alps serve as a classical example of collisional orogens, it becomes clearer that substantial questions on their evolution can only be answered in the Carpathians and Dinarides. Our understanding of the geodynamic evolution of the Alpine-Dinaride-Carpathian System has substantially improved and will continue to develop; this is thanks to collaboration between eastern and western Europe, but also due to the application of new methods and the launch of research initiatives. The largely field-based contributions investigate the following subjects: pre-Alpine heritage and Alpine reactivation; Mesozoic palaeogeography and Alpine subduction and collision processes; extrusion tectonics from the Eastern Alps to the Carpathians and the Pannonian Basin; orogen-parallel and orogen-perpendicular extension; record of orogeny in foreland basins; tectonometamorphic evolution; and relations between the Alps, Apennines and Corsica.










Earth Processes


Book Description

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 95. Publication of this monograph will coincide, to a precision of a few per mil, with the centenary of Henri Becquerel's discovery of "radiations actives" (C. R. Acad. Sci., Feb. 24, 1896). In 1896 the Earth was only 40 million years old according to Lord Kelvin. Eleven years later, Boltwood had pushed the Earth's age past 2000 million years, based on the first U/Pb chemical dating results. In exciting progression came discovery of isotopes by J. J. Thomson in 1912, invention of the mass spectrometer by Dempster (1918) and Aston (1919), the first measurement of the isotopic composition of Pb (Aston, 1927) and the final approach, using Pb-Pb isotopic dating, to the correct age of the Earth: close-2.9 Ga (Gerling, 1942), closer-3.0 Ga (Holmes, 1949) and closest-4.50 Ga (Patterson, Tilton and Inghram, 1953).




A Continent Revealed


Book Description

The scientific achievements of the European Geotraverse Committee (EGT) are presented in this unique study of the tectonic evolution of the continent of Europe and the first comprehensive cross section of the continental lithosphere.







Petrogenesis of Metamorphic Rocks


Book Description

Metamorphic rocks are one of the three classes of rocks. Seen on a global scale they constitute the dominant material of the Earth. The understanding of the petrogenesis and significance of metamorphic of geological education. rocks is, therefore, a fundamental topic There are, of course, many different possible ways to lecture on this theme. This book addresses rock metamorphism from a relatively pragmatic view point. It has been written for the senior undergrad uate or graduate student who needs practical knowledge of how to interpret various groups of minerals found in metamorphic rocks. The book is also of interest for the non-specialist and non-petrolo gist professional who is interested in learning more about the geolo gical messages that metamorphic mineral assemblages are sending, as well as pressure and temperature conditions of formation. The book is organized into two parts. The first part introduces the different types of metamorphism, defines some names, terms and graphs used to describe metamorphic rocks, and discusses principal aspects of metamorphic processes. Part I introduces the causes of metamorphism on various scales in time and space, and some principles of chemical reactions in rocks that accompany metamorphism, but without treating these principles in detail, and presenting the thermodynamic basis for quantitative analysis of reactions and their equilibria in metamorphism. Part I also presents concepts of metamorphic grade or intensity of metamorphism, such as the metamorphic-facies concept.




Geology of the Alps


Book Description

The Alps, with their outstanding outcrop conditions, represent a superb natural laboratory for many geological processes, and have played a crucial role in the history of geology. This book gives an up-to-date and holistic overview of the key aspects of Alpine geology. After a brief presentation of the plate tectonic framework, the rock suites are discussed, starting with the pre-Triassic crystalline basement, followed by Paleozoic, Mesozoic and Cenozoic sedimentary sequences. The lithological description of the rock types is supplemented by a discussion of their paleogeographic and plate tectonic contexts. The book goes on to describe the structure of the Alps (including the Jura Mountains and the Alpine foreland to the north and south) illustrated by numerous cross-sections. The evolution of the Alps as a mountain chain incorporates a discussion of the Alpine metamorphic history and a compilation of orogenic timetables. The final sections cover the evolution of Alpine drainage patterns and the region’s glacial history. Readership: The book is essential reading for students and lecturers on Alpine courses and excursions, and all earth-scientists interested in the geology of the region.




Low-Temperature Thermochronology:


Book Description

Volume 58 of Reviews in Mineralogy and Geochemistry presents 22 chapters covering many of the important modern aspects of thermochronology. The coverage of the chapters ranges widely, including historical perspective, analytical techniques, kinetics and calibrations, modeling approaches, and interpretational methods. In general, the chapters focus on intermediate- to low-temperature thermochronometry, though some chapters cover higher temperature methods such as monazite U/Pb closure profiles, and the same theory and approaches used in low-temperature thermochronometry are generally applicable to higher temperature systems. The widely used low- to medium-temperature thermochronometric systems are reviewed in detail in these chapters, but while there are numerous chapters reviewing various aspects of the apatite (U-Th)/He system, there is no chapter singularly devoted to it, partly because of several previous reviews recently published on this topic.