Book Description
Publisher description
Author : Ronen Feldman
Publisher : Cambridge University Press
Page : 423 pages
File Size : 36,54 MB
Release : 2007
Category : Computers
ISBN : 0521836573
Publisher description
Author : Gary Miner
Publisher : Academic Press
Page : 1096 pages
File Size : 19,85 MB
Release : 2012-01-11
Category : Computers
ISBN : 012386979X
"The world contains an unimaginably vast amount of digital information which is getting ever vaster ever more rapidly. This makes it possible to do many things that previously could not be done: spot business trends, prevent diseases, combat crime and so on. Managed well, the textual data can be used to unlock new sources of economic value, provide fresh insights into science and hold governments to account. As the Internet expands and our natural capacity to process the unstructured text that it contains diminishes, the value of text mining for information retrieval and search will increase dramatically. This comprehensive professional reference brings together all the information, tools and methods a professional will need to efficiently use text mining applications and statistical analysis. The Handbook of Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications presents a comprehensive how- to reference that shows the user how to conduct text mining and statistically analyze results. In addition to providing an in-depth examination of core text mining and link detection tools, methods and operations, the book examines advanced preprocessing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection using real world example tutorials in such varied fields as corporate, finance, business intelligence, genomics research, and counterterrorism activities"--
Author : Sholom M. Weiss
Publisher : Springer Science & Business Media
Page : 244 pages
File Size : 44,15 MB
Release : 2010-01-08
Category : Computers
ISBN : 0387345558
Data mining is a mature technology. The prediction problem, looking for predictive patterns in data, has been widely studied. Strong me- ods are available to the practitioner. These methods process structured numerical information, where uniform measurements are taken over a sample of data. Text is often described as unstructured information. So, it would seem, text and numerical data are different, requiring different methods. Or are they? In our view, a prediction problem can be solved by the same methods, whether the data are structured - merical measurements or unstructured text. Text and documents can be transformed into measured values, such as the presence or absence of words, and the same methods that have proven successful for pred- tive data mining can be applied to text. Yet, there are key differences. Evaluation techniques must be adapted to the chronological order of publication and to alternative measures of error. Because the data are documents, more specialized analytical methods may be preferred for text. Moreover, the methods must be modi?ed to accommodate very high dimensions: tens of thousands of words and documents. Still, the central themes are similar.
Author : Ken Yale
Publisher : Elsevier
Page : 824 pages
File Size : 11,71 MB
Release : 2017-11-09
Category : Mathematics
ISBN : 0124166458
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Author : Dr. Goutam Chakraborty
Publisher : SAS Institute
Page : 340 pages
File Size : 20,75 MB
Release : 2014-11-22
Category : Computers
ISBN : 1612907873
Big data: It's unstructured, it's coming at you fast, and there's lots of it. In fact, the majority of big data is text-oriented, thanks to the proliferation of online sources such as blogs, emails, and social media. However, having big data means little if you can't leverage it with analytics. Now you can explore the large volumes of unstructured text data that your organization has collected with Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS. This hands-on guide to text analytics using SAS provides detailed, step-by-step instructions and explanations on how to mine your text data for valuable insight. Through its comprehensive approach, you'll learn not just how to analyze your data, but how to collect, cleanse, organize, categorize, explore, and interpret it as well. Text Mining and Analysis also features an extensive set of case studies, so you can see examples of how the applications work with real-world data from a variety of industries. Text analytics enables you to gain insights about your customers' behaviors and sentiments. Leverage your organization's text data, and use those insights for making better business decisions with Text Mining and Analysis. This book is part of the SAS Press program.
Author : Sholom M. Weiss
Publisher : Springer
Page : 249 pages
File Size : 34,54 MB
Release : 2015-09-07
Category : Computers
ISBN : 1447167503
This successful textbook on predictive text mining offers a unified perspective on a rapidly evolving field, integrating topics spanning the varied disciplines of data science, machine learning, databases, and computational linguistics. Serving also as a practical guide, this unique book provides helpful advice illustrated by examples and case studies. This highly anticipated second edition has been thoroughly revised and expanded with new material on deep learning, graph models, mining social media, errors and pitfalls in big data evaluation, Twitter sentiment analysis, and dependency parsing discussion. The fully updated content also features in-depth discussions on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Features: includes chapter summaries and exercises; explores the application of each method; provides several case studies; contains links to free text-mining software.
Author : Gabe Ignatow
Publisher : SAGE Publications
Page : 189 pages
File Size : 29,37 MB
Release : 2016-04-20
Category : Social Science
ISBN : 1483369323
Online communities generate massive volumes of natural language data and the social sciences continue to learn how to best make use of this new information and the technology available for analyzing it. Text Mining brings together a broad range of contemporary qualitative and quantitative methods to provide strategic and practical guidance on analyzing large text collections. This accessible book, written by a sociologist and a computer scientist, surveys the fast-changing landscape of data sources, programming languages, software packages, and methods of analysis available today. Suitable for novice and experienced researchers alike, the book will help readers use text mining techniques more efficiently and productively.
Author : do Prado, Hercules Antonio
Publisher : IGI Global
Page : 376 pages
File Size : 48,57 MB
Release : 2007-10-31
Category : Computers
ISBN : 1599043750
"This book provides the most recent technical information related to the computational models of the text mining process, discussing techniques within the realms of classification, association analysis, information extraction, and clustering. Offering an innovative approach to the utilization of textual information mining to maximize competitive advantage, it will provide libraries with the defining reference on this topic"--Provided by publisher.
Author : Morteza Dehghani
Publisher : Guilford Publications
Page : 650 pages
File Size : 30,19 MB
Release : 2022-03-02
Category : Social Science
ISBN : 1462548431
Recent years have seen an explosion of interest in the use of computerized text analysis methods to address basic psychological questions. This comprehensive handbook brings together leading language analysis scholars to present foundational concepts and methods for investigating human thought, feeling, and behavior using language. Contributors work toward integrating psychological science and theory with natural language processing (NLP) and machine learning. Ethical issues in working with natural language data sets are discussed in depth. The volume showcases NLP-driven techniques and applications in areas including interpersonal relationships, personality, morality, deception, social biases, political psychology, psychopathology, and public health.
Author : Julia Silge
Publisher : "O'Reilly Media, Inc."
Page : 193 pages
File Size : 50,98 MB
Release : 2017-06-12
Category : Computers
ISBN : 1491981628
Chapter 7. Case Study : Comparing Twitter Archives; Getting the Data and Distribution of Tweets; Word Frequencies; Comparing Word Usage; Changes in Word Use; Favorites and Retweets; Summary; Chapter 8. Case Study : Mining NASA Metadata; How Data Is Organized at NASA; Wrangling and Tidying the Data; Some Initial Simple Exploration; Word Co-ocurrences and Correlations; Networks of Description and Title Words; Networks of Keywords; Calculating tf-idf for the Description Fields; What Is tf-idf for the Description Field Words?; Connecting Description Fields to Keywords; Topic Modeling.