The Fourier Transform and Its Applications
Author : Ronald Newbold Bracewell
Publisher :
Page : pages
File Size : 22,21 MB
Release : 1978
Category : Fourier transformations
ISBN :
Author : Ronald Newbold Bracewell
Publisher :
Page : pages
File Size : 22,21 MB
Release : 1978
Category : Fourier transformations
ISBN :
Author : Sir Norman Lockyer
Publisher :
Page : 1104 pages
File Size : 11,7 MB
Release : 1916
Category : Science
ISBN :
Author :
Publisher :
Page : 760 pages
File Size : 34,5 MB
Release : 1911
Category : Arts
ISBN :
Author : James Silk Buckingham
Publisher :
Page : 830 pages
File Size : 29,3 MB
Release : 1907
Category :
ISBN :
Author : Halsey Royden
Publisher : Pearson Modern Classics for Advanced Mathematics Series
Page : 0 pages
File Size : 21,17 MB
Release : 2017-02-13
Category : Functional analysis
ISBN : 9780134689494
This text is designed for graduate-level courses in real analysis. Real Analysis, 4th Edition, covers the basic material that every graduate student should know in the classical theory of functions of a real variable, measure and integration theory, and some of the more important and elementary topics in general topology and normed linear space theory. This text assumes a general background in undergraduate mathematics and familiarity with the material covered in an undergraduate course on the fundamental concepts of analysis.
Author : Janet Heine Barnett
Publisher : American Mathematical Society
Page : 458 pages
File Size : 32,6 MB
Release : 2023-09-27
Category : Mathematics
ISBN : 1470469898
“It appears to me that if one wants to make progress in mathematics one should study the masters and not the pupils.” —Niels Henrik Abel Recent pedagogical research has supported Abel's claim of the effectiveness of reading the masters. Students exposed to historically based pedagogy see mathematics not as a monolithic assemblage of facts but as a collection of mental processes and an evolving cultural construct built to solve actual problems. Exposure to the immediacy of the original investigations can inspire an inquiry mindset in students and lead to an appreciation of mathematics as a living intellectual activity. TRIUMPHS (TRansforming Instruction in Undergraduate Mathematics via Primary Historical Sources) is an NSF-funded initiative to design materials that effectively harness the power of reading primary historical documents in undergraduate mathematics instruction. Teaching and Learning with Primary Source Projects is a collection of 24 classroom modules (PSPs) produced by TRIUMPHS that incorporate the reading of primary source excerpts to teach core mathematical topics. The selected excerpts are intertwined with thoughtfully designed student tasks that prompt students to actively engage with and explore the source material. Rigorously classroom tested and scrupulously edited to comply with the standards developed by the TRIUMPHS project, each of the PSPs in this volume can be inserted directly into a course in real analysis, complex variables, or topology and used to replace a standard textbook treatment of core course content. The volume also contains a comprehensive historical overview of the sociocultural and mathematical contexts within which the three subjects developed, along with extensive implementation guidance. Students and faculty alike are afforded a deeper classroom experience as they heed Abel's advice by studying today's mathematics through the words of the masters who brought that mathematics to life. Primary sources provide motivation in the words of the original discoverers of new mathematics, draw attention to subtleties, encourage reflection on today's paradigms, and enhance students' ability to participate equally, regardless of their background. These beautifully written primary source projects that adopt an “inquiry” approach are rich in features lacking in modern textbooks. Prompted by the study of historical sources, students will grapple with uncertainties, ask questions, interpret, conjecture, and compare multiple perspectives, resulting in a unique and vivid guided learning experience. —David Pengelley, Oregon State University
Author : Michiel Hazewinkel
Publisher : Springer Science & Business Media
Page : 543 pages
File Size : 12,16 MB
Release : 2012-12-06
Category : Mathematics
ISBN : 9401512337
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fme subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Author : Eleanor E. Hawkins
Publisher :
Page : 2222 pages
File Size : 43,1 MB
Release : 1921
Category : American literature
ISBN :
Author : Loukas Grafakos
Publisher : Springer Science & Business Media
Page : 494 pages
File Size : 32,50 MB
Release : 2008-09-18
Category : Mathematics
ISBN : 0387094326
The primary goal of this text is to present the theoretical foundation of the field of Fourier analysis. This book is mainly addressed to graduate students in mathematics and is designed to serve for a three-course sequence on the subject. The only prerequisite for understanding the text is satisfactory completion of a course in measure theory, Lebesgue integration, and complex variables. This book is intended to present the selected topics in some depth and stimulate further study. Although the emphasis falls on real variable methods in Euclidean spaces, a chapter is devoted to the fundamentals of analysis on the torus. This material is included for historical reasons, as the genesis of Fourier analysis can be found in trigonometric expansions of periodic functions in several variables. While the 1st edition was published as a single volume, the new edition will contain 120 pp of new material, with an additional chapter on time-frequency analysis and other modern topics. As a result, the book is now being published in 2 separate volumes, the first volume containing the classical topics (Lp Spaces, Littlewood-Paley Theory, Smoothness, etc...), the second volume containing the modern topics (weighted inequalities, wavelets, atomic decomposition, etc...). From a review of the first edition: “Grafakos’s book is very user-friendly with numerous examples illustrating the definitions and ideas. It is more suitable for readers who want to get a feel for current research. The treatment is thoroughly modern with free use of operators and functional analysis. Morever, unlike many authors, Grafakos has clearly spent a great deal of time preparing the exercises.” - Ken Ross, MAA Online
Author :
Publisher :
Page : 994 pages
File Size : 38,46 MB
Release : 1970
Category : Teaching
ISBN :