The Theory of Symmetry Actions in Quantum Mechanics


Book Description

This is a book about representing symmetry in quantum mechanics. The book is on a graduate and/or researcher level and it is written with an attempt to be concise, to respect conceptual clarity and mathematical rigor. The basic structures of quantum mechanics are used to identify the automorphism group of quantum mechanics. The main concept of a symmetry action is defined as a group homomorphism from a given group, the group of symmetries, to the automorphism group of quantum mechanics. The structure of symmetry actions is determined under the assumption that the symmetry group is a Lie group. The Galilei invariance is used to illustrate the general theory by giving a systematic presentation of a Galilei invariant elementary particle. A brief description of the Galilei invariant wave equations is also given.




The Theory of Symmetry Actions in Quantum Mechanics


Book Description

This is a book about representing symmetry in quantum mechanics. The book is on a graduate and/or researcher level and it is written with an attempt to be concise, to respect conceptual clarity and mathematical rigor. The basic structures of quantum mechanics are used to identify the automorphism group of quantum mechanics. The main concept of a symmetry action is defined as a group homomorphism from a given group, the group of symmetries, to the automorphism group of quantum mechanics. The structure of symmetry actions is determined under the assumption that the symmetry group is a Lie group. The Galilei invariance is used to illustrate the general theory by giving a systematic presentation of a Galilei invariant elementary particle. A brief description of the Galilei invariant wave equations is also given.




A First Course on Symmetry, Special Relativity and Quantum Mechanics


Book Description

This book provides an in-depth and accessible description of special relativity and quantum mechanics which together form the foundation of 21st century physics. A novel aspect is that symmetry is given its rightful prominence as an integral part of this foundation. The book offers not only a conceptual understanding of symmetry, but also the mathematical tools necessary for quantitative analysis. As such, it provides a valuable precursor to more focused, advanced books on special relativity or quantum mechanics. Students are introduced to several topics not typically covered until much later in their education.These include space-time diagrams, the action principle, a proof of Noether's theorem, Lorentz vectors and tensors, symmetry breaking and general relativity. The book also provides extensive descriptions on topics of current general interest such as gravitational waves, cosmology, Bell's theorem, entanglement and quantum computing. Throughout the text, every opportunity is taken to emphasize the intimate connection between physics, symmetry and mathematics.The style remains light despite the rigorous and intensive content. The book is intended as a stand-alone or supplementary physics text for a one or two semester course for students who have completed an introductory calculus course and a first-year physics course that includes Newtonian mechanics and some electrostatics. Basic knowledge of linear algebra is useful but not essential, as all requisite mathematical background is provided either in the body of the text or in the Appendices. Interspersed through the text are well over a hundred worked examples and unsolved exercises for the student.




Physics from Symmetry


Book Description

This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.




Symmetry and Quantum Mechanics


Book Description

Structured as a dialogue between a mathematician and a physicist, Symmetry and Quantum Mechanics unites the mathematical topics of this field into a compelling and physically-motivated narrative that focuses on the central role of symmetry. Aimed at advanced undergraduate and beginning graduate students in mathematics with only a minimal background in physics, this title is also useful to physicists seeking a mathematical introduction to the subject. Part I focuses on spin, and covers such topics as Lie groups and algebras, while part II offers an account of position and momentum in the context of the representation theory of the Heisenberg group, along the way providing an informal discussion of fundamental concepts from analysis such as self-adjoint operators on Hilbert space and the Stone-von Neumann Theorem. Mathematical theory is applied to physical examples such as spin-precession in a magnetic field, the harmonic oscillator, the infinite spherical well, and the hydrogen atom.




Relativity, Symmetry and the Structure of the Quantum Theory


Book Description

Quantum theory is one of the most successful of all physical theories. Our everyday world is dominated by devices that function because of knowledge of the quantum world. Yet many, physicists and non-physicists alike, find the theory which explains the beh




New Symmetry Principles in Quantum Field Theory


Book Description

Soon after the discovery of quantum mechanics, group theoretical methods were used extensively in order to exploit rotational symmetry and classify atomic spectra. And until recently it was thought that symmetries in quantum mechanics should be groups. But it is not so. There are more general algebras, equipped with suitable structure, which admit a perfectly conventional interpretation as a symmetry of a quantum mechanical system. In any case, a "trivial representation" of the algebra is defined, and a tensor product of representations. But in contrast with groups, this tensor product needs to be neither commutative nor associative. Quantum groups are special cases, in which associativity is preserved. The exploitation of such "Quantum Symmetries" was a central theme at the Ad vanced Study Institute. Introductory lectures were presented to familiarize the participants with the al gebras which can appear as symmetries and with their properties. Some models of local field theories were discussed in detail which have some such symmetries, in par ticular conformal field theories and their perturbations. Lattice models provide many examples of quantum theories with quantum symmetries. They were also covered at the school. Finally, the symmetries which are the cause of the solubility of inte grable models are also quantum symmetries of this kind. Some such models and their nonlocal conserved currents were discussed.




Classical Mechanics and Quantum Mechanics: An Historic-Axiomatic Approach


Book Description

This unique textbook presents a novel, axiomatic pedagogical path from classical to quantum physics. Readers are introduced to the description of classical mechanics, which rests on Euler’s and Helmholtz’s rather than Newton’s or Hamilton’s representations. Special attention is given to the common attributes rather than to the differences between classical and quantum mechanics. Readers will also learn about Schrödinger’s forgotten demands on quantization, his equation, Einstein’s idea of ‘quantization as selection problem’. The Schrödinger equation is derived without any assumptions about the nature of quantum systems, such as interference and superposition, or the existence of a quantum of action, h. The use of the classical expressions for the potential and kinetic energies within quantum physics is justified. Key features: · Presents extensive reference to original texts. · Includes many details that do not enter contemporary representations of classical mechanics, although these details are essential for understanding quantum physics. · Contains a simple level of mathematics which is seldom higher than that of the common (Riemannian) integral. · Brings information about important scientists · Carefully introduces basic equations, notations and quantities in simple steps This book addresses the needs of physics students, teachers and historians with its simple easy to understand presentation and comprehensive approach to both classical and quantum mechanics..




Reflections on Quanta, Symmetries, and Supersymmetries


Book Description

This is a collection of essays based on lectures that author has given on various occasions on foundation of quantum theory, symmetries and representation theory, and the quantum theory of the superworld created by physicists. The lectures are linked by a unifying theme: how the quantum world and superworld appear under the lens of symmetry and supersymmetry. In the world of ultra-small times and distances such as the Planck length and Planck time, physicists believe no measurements are possible and so the structure of spacetime itself is an unknown that has to be first understood. There have been suggestions (Volovich hypothesis) that world geometry at such energy regimes is non-archimedian and some of the lectures explore the consequences of such a hypothesis. Ultimately, symmetries and supersymmetries are described by the representation of groups and supergroups. The author's interest in representation is a lifelong one and evolved slowly, and owes a great deal to conversations and discussions he had with George Mackey and Harish-Chandra. The book concludes with a retrospective look at these conversations.




Quantum Mechanics of Fundamental Systems


Book Description

This volume examines the latest advances emerging from the theoretical exploration into the quantum mechanical structure of our universe. It will be of interest to researchers dealing with strings, quantum fields, gauge theory, and quantum gravity.