The Theory of the Electric and Magnetic Properties of Molecules


Book Description

Quantum-mechanical theories -- Perturbation and variation methods -- Electric and magnetic moments -- Polarizabilities and susceptibilities -- Spin Interactions -- The effect of radiation in electric and magnetic fields -- Appendix I : Classical electrodynamics -- Appendix II : The multipole expansion.













Optical, Electric and Magnetic Properties of Molecules


Book Description

This book celebrates the career and scientific accomplishments of Professor David Buckingham, who is due to retire from his Chair at Cambridge University in 1997. The adopted format comprises reprints of a number of David Buckingham's key scientific papers, each one or two of these preceded by a review of the corresponding area of David's wide-ranging research interest. Each reviewer is recognised as an expert in that field of interest and has some close association with David Buckingham, as a scientific colleague and/or a former research student. The book should serve as a distinctive reference source, both retrospective and prospective, for the field of chemical physics with which the name A.D. Buckingham is associated. The editors opted to reprint a majority of early classic Buckingham papers, balanced by some of David Buckingham's more recent publications. Reprinted papers have been placed into a general scientific context that covers prior influences on, and later impacts by, the work nominated for review.







Magnetism


Book Description

Combining the contemporary knowledge from widely scattered sources, this is a much-needed and comprehensive overview of the field. In maintaining a balance between theory and experiment, the book guides both advanced students and specialists to this research area. Topical reviews written by the foremost scientists explain recent trends and advances, focusing on the correlations between electronic structure and magnetic properties. The book spans recent trends in magnetism for molecules -- as well as inorganic-based materials, with an emphasis on new phenomena being explored from both experimental and theoretical viewpoints with the aim of understanding magnetism on the atomic scale. The volume helps readers evaluate their own experimental observations and serves as a basis for the design of new magnetic materials. Topics covered include: * Metallocenium Salts of Radical Anion Bis-(dichalcogenate) metalates * Chiral Molecule-Based Magnets * Cooperative Magnetic Behavior in Metal-Dicyanamide Complexes * Lanthanide Ions in Molecular Exchange Coupled Systems * Monte Carlo Simulation * Metallocene-Based Magnets * Magnetic Nanoporous Molecular Materials A unique reference work, indispensable for everyone concerned with the phenomena of magnetism.







Quantum Chemical Approach for Organic Ferromagnetic Material Design


Book Description

This brief provides an overview of theoretical research in organic ferromagnetic material design using quantum chemical approaches based on molecular orbital theory from primary Hückel to ab initio levels of theory. Most of the content describes the authors’ approach to identify simple and efficient guidelines for magnetic design, which have not been described in other books. Individual chapters cover quantum chemistry methods that may be used to find hydrocarbon systems with degenerate non-bonding molecular orbitals that interact with each other, to identify high-spin-preferred systems using an analytical index that allows for simple design of high-spin systems as well as to analyze the effect of high-spin stability through orbital interactions. The extension of these methods to large systems is discussed.This book is a valuable resource for students and researchers who are interested in quantum chemistry related to magnetic property.




Research Frontiers in Magnetochemistry


Book Description

Over the past 25 years, there have been many advances in the understanding of magnetic phenomena in molecular systems. For example, a variety of low-dimensional materials, and many new ferromagnetic, antiferromagnetic, and ferrimagnetic systems have been synthesized and analyzed; metal cluster compounds that exhibit magnetic exchange have been examined; new orbital overlap theories have been proposed to explain magneto-structural correlations in exchange coupled systems; and efforts directed toward the preparation of an organic ferromagnetic material have produced new and interesting compounds. There have also been many advances in the use of magnetism as a probe of inorganic biomolecules.This volume brings together reviews of current research in magnetochemistry that are written by the world's leading researchers in the fields of chemistry, physics, materials science, and magnetism. It contains comprehensive and in-depth reviews that describe some of the current activities of these scientists and their research and lays the foundation for future research endeavors.