Positrons in Solids


Book Description

In condensed matter initially fast positrons annihilate after having reached equi librium with the surroundings. The interaction of positrons with matter is governed by the laws of ordinary quantum mechanics. Field theory and antiparticle properties enter only in the annihilation process leading to the emergence of energetic photons. The monitoring of annihilation radiation by nuclear spectroscopic methods provides valuable information on the electron-positron system which can directly be related to the electronic structure of the medium. Since the positron is a positive electron its behavior in matter is especially interesting to solid-state and atomic physi cists. The small mass quarantees that the positron is really a quantum mechanical particle and completely different from any other particles and atoms. Positron physics started about 25 years ago but discoveries of new features in its interac tion with matter have maintained continuous interest and increasing activity in the field. Nowadays it is becoming part of the "stock-in-trade" of experimental physics.




Positron Physics


Book Description

This book provides a comprehensive and up-to-date account of the field of low energy positrons and positronium within atomic and molecular physics. Each chapter contains a blend of theory and experiment, giving a balanced treatment of all the topics. Useful for graduate students and researchers in physics and chemistry.




QED and the Men Who Made It


Book Description

In the 1930s, physics was in a crisis. There appeared to be no way to reconcile the new theory of quantum mechanics with Einstein's theory of relativity. Several approaches had been tried and had failed. In the post-World War II period, four eminent physicists rose to the challenge and developed a calculable version of quantum electrodynamics (QED), probably the most successful theory in physics. This formulation of QED was pioneered by Freeman Dyson, Richard Feynman, Julian Schwinger, and Sin-Itiro Tomonaga, three of whom won the Nobel Prize for their work. In this book, physicist and historian Silvan Schweber tells the story of these four physicists, blending discussions of their scientific work with fascinating biographical sketches. Setting the achievements of these four men in context, Schweber begins with an account of the early work done by physicists such as Dirac and Jordan, and describes the gathering of eminent theorists at Shelter Island in 1947, the meeting that heralded the new era of QED. The rest of his narrative comprises individual biographies of the four physicists, discussions of their major contributions, and the story of the scientific community in which they worked. Throughout, Schweber draws on his technical expertise to offer a lively and lucid explanation of how this theory was finally established as the appropriate way to describe the atomic and subatomic realms.




Paul Adrien Maurice Dirac


Book Description

Paul Dirac, who died in 1984, was without question one of the greatest physicists of the twentieth century. His revolutionary contribution to modern quantum theory is remembered for its insight and creativity. He is especially famous for his prediction of the magnetic moment and spin of the electron and for the existence of antiparticles. He was awarded the Nobel Prize for physics in 1933 at the age of 31. In this memorial volume, 24 of Dirac's friends, colleagues and contemporaries remember him with affection. There are chapters describing Dirac's personality, and many anecdotes about the man with a reputation for silence. Other chapters describe Dirac's science and its impact on modern physics.




John von Neumann and the Foundations of Quantum Physics


Book Description

John von Neumann (1903-1957) was undoubtedly one of the scientific geniuses of the 20th century. The main fields to which he contributed include various disciplines of pure and applied mathematics, mathematical and theoretical physics, logic, theoretical computer science, and computer architecture. Von Neumann was also actively involved in politics and science management and he had a major impact on US government decisions during, and especially after, the Second World War. There exist several popular books on his personality and various collections focusing on his achievements in mathematics, computer science, and economy. Strangely enough, to date no detailed appraisal of his seminal contributions to the mathematical foundations of quantum physics has appeared. Von Neumann's theory of measurement and his critique of hidden variables became the touchstone of most debates in the foundations of quantum mechanics. Today, his name also figures most prominently in the mathematically rigorous branches of contemporary quantum mechanics of large systems and quantum field theory. And finally - as one of his last lectures, published in this volume for the first time, shows - he considered the relation of quantum logic and quantum mechanical probability as his most important problem for the second half of the twentieth century. The present volume embraces both historical and systematic analyses of his methodology of mathematical physics, and of the various aspects of his work in the foundations of quantum physics, such as theory of measurement, quantum logic, and quantum mechanical entropy. The volume is rounded off by previously unpublished letters and lectures documenting von Neumann's thinking about quantum theory after his 1932 Mathematical Foundations of Quantum Mechanics. The general part of the Yearbook contains papers emerging from the Institute's annual lecture series and reviews of important publications of philosophy of science and its history.




Quantum Probability and Related Topics


Book Description

Quantum Probability and Related Topics is a series of volumes whose goal is to provide a picture of the state of the art in this rapidly growing field where classical probability, quantum physics and functional analysis merge together in an original synthesis which, for 20 years, has been enriching these three areas with new ideas, techniques and results.




Paul Dirac


Book Description

A unique insight into Dirac's life and work, by four internationally respected physicists.




The Concept of the Positron


Book Description

Originally published in 1963, The Concept of the Positron forms a detailed analysis of quantum theory. Whilst it is not as well known as Professor Hanson's previous book, Patterns of Discovery (1958), the text has many interesting aspects. In many ways it goes further than Hanson's earlier work in approaching the problems of theory competition and the rationality of science, topics that have since become central to the philosophy of science. It is also notable for a rigorous and forthright defence of the Copenhagen Interpretation. Taken together, the ideas presented in this book constitute a first-rate achievement in the history and philosophy of science. This paperback reissue comes with a new preface from Matthew Lund, Assistant Professor, Faculty of Philosophy and Religious Studies at Rowan University.




Principles and Applications of Positron & Positronium Chemistry


Book Description

This book provides a comprehensive description of the principles and applications of positron and positronium chemistry. Pedagogical and tutorial in nature, it will be ideal for graduate students and researchers in the area of positron annihilation spectroscopy. The contributing authors are authoritative scientists prominent in the frontiers of research, actively pursuing positron annihilation research on chemical and applied systems. Contents: Introduction to Positron and Positronium Chemistry (Y C Jean et al.); Compounds of Positrons and Positronium (D M Schrader); Experimental Techniques in Positron Spectroscopy (P G Coleman); Organic and Inorganic Chemistry of the Positron and Positronium (G Duplotre & I Billard); Physical and Radiation Chemistry of the Positron and Positronium (S V Stepanov & V M Byakov); Positrons and Positronium in the Gas Phase (D M Schrader); Positron Porosimetry (M H Weber & K G Lynn); Positron Annihilation Studies on Superconducting Materials (C S Sundar); Positronium in Si and SiO 2 Thin Films (R Suzuki); Applications to Polymers (P E Mallon); Applications of Slow Positrons to Polymeric Surfaces and Coatings (Y C Jean et al.); Positron Annihilation Induced Auger Spectroscopy (S Amdani et al.); Characterization of Nanoparticle and Nanopore Materials (J Xu); AMOC in Positron and Positronium Chemistry (H Stoll et al.). Readership: Materials science researchers; physical chemists; polymer scientists and engineers; chemical and mechanical engineers; solid state physicists; graduate students in chemistry, physics, engineering and polymer science; coating industry researchers."