Theory


Book Description

This book is the second edition of the first complete study and monograph dedicated to singular traces. The text offers, due to the contributions of Albrecht Pietsch and Nigel Kalton, a complete theory of traces and their spectral properties on ideals of compact operators on a separable Hilbert space. The second edition has been updated on the fundamental approach provided by Albrecht Pietsch. For mathematical physicists and other users of Connes’ noncommutative geometry the text offers a complete reference to traces on weak trace class operators, including Dixmier traces and associated formulas involving residues of spectral zeta functions and asymptotics of partition functions.




Theory


Book Description

This book is the second edition of the first complete study and monograph dedicated to singular traces. The text offers, due to the contributions of Albrecht Pietsch and Nigel Kalton, a complete theory of traces and their spectral properties on ideals of compact operators on a separable Hilbert space. The second edition has been updated on the fundamental approach provided by Albrecht Pietsch. For mathematical physicists and other users of Connes’ noncommutative geometry the text offers a complete reference to traces on weak trace class operators, including Dixmier traces and associated formulas involving residues of spectral zeta functions and asymptotics of partition functions.




The Book of Traces


Book Description

The theory of traces employs techniques and tackles problems from quite diverse areas which include formal language theory, combinatorics, graph theory, algebra, logic, and the theory of concurrent systems. In all these areas the theory of traces has led to interesting problems and significant results. It has made an especially big impact in formal language theory and the theory of concurrent systems. In both these disciplines it is a well-recognized and dynamic research area. Within formal language theory it yields the theory of partially commutative monoids, and provides an important connection between languages and graphs. Within the theory of concurrent systems it provides an important formal framework for the analysis and synthesis of concurrent systems.This monograph covers all important research lines of the theory of traces; each chapter is devoted to one research line and is written by leading experts. The book is organized in such a way that each chapter can be read independently ? and hence it is very suitable for advanced courses or seminars on formal language theory, the theory of concurrent systems, the theory of semigroups, and combinatorics. An extensive bibliography is included. At present, there is no other book of this type on trace theory.




Singular Traces


Book Description

This book is the first complete study and monograph dedicated to singular traces. The text mathematically formalises the study of traces in a self contained theory of functional analysis. Extensive notes will treat the historical development. The final section will contain the most complete and concise treatment known of the integration half of Connes' quantum calculus. Singular traces are traces on ideals of compact operators that vanish on the subideal of finite rank operators. Singular traces feature in A. Connes' interpretation of noncommutative residues. Particularly the Dixmier trace,which generalises the restricted Adler-Manin-Wodzicki residue of pseudo-differential operators and plays the role of the residue for a new catalogue of 'geometric' spaces, including Connes-Chamseddine standard models, Yang-Mills action for quantum differential forms, fractals, isospectral deformations, foliations and noncommutative index theory. The theory of singular traces has been studied after Connes' application to non-commutative geometry and physics by various authors. Recent work by Nigel Kalton and the authors has advanced the theory of singular traces.Singular traces can be equated to symmetric functionals of symmetric sequence or function spaces, residues of zeta functions and heat kernel asymptotics, and characterised by Lidksii and Fredholm formulas. The traces and formulas used in noncommutative geometry are now completely understood in this theory, with surprising new mathematical and physical consequences. For mathematical readers the text offers fundamental functional analysis results and, due to Nigel Kalton's contribution, a now complete theory of traces on compact operators. For mathematical physicists and other users of Connes' noncommutative geometry the text offers a complete reference to Dixmier traces and access to the deeper mathematical features of traces on ideals associated to the harmonic sequence. These features, not known and not discussed in general texts on noncommutative geometry, are undoubtably physical and probe to the fascinating heart of classical limits and quantization.







Traces and Determinants of Linear Operators


Book Description

This book is dedicated to a theory of traces and determinants on embedded algebras of linear operators, where the trace and determinant are extended from finite rank operators by a limit process. The self-contained material should appeal to a wide group of mathematicians and engineers, and is suitable for teaching.




Toward a Sociology of the Trace


Book Description

Questions national identity by investigating the creation of memory and meaning.







The Oxford Handbook of Cognitive Neuroscience, Volume 1


Book Description

A rich source of authoritative information that supports reading and study in the field of cognitive neuroscience, this two-volume handbook reviews the current state-of-the-science in all major areas of the field.




Methods of Geometric Analysis in Extension and Trace Problems


Book Description

The book presents a comprehensive exposition of extension results for maps between different geometric objects and of extension-trace results for smooth functions on subsets with no a priori differential structure (Whitney problems). The account covers development of the area from the initial classical works of the first half of the 20th century to the flourishing period of the last decade. Seemingly very specific these problems have been from the very beginning a powerful source of ideas, concepts and methods that essentially influenced and in some cases even transformed considerable areas of analysis. Aside from the material linked by the aforementioned problems the book also is unified by geometric analysis approach used in the proofs of basic results. This requires a variety of geometric tools from convex and combinatorial geometry to geometry of metric space theory to Riemannian and coarse geometry and more. The necessary facts are presented mostly with detailed proofs to make the book accessible to a wide audience.