The Thermodynamic and Transport Properties of Sodium and Sodium Vapor


Book Description

The thermodynamic properties for the saturated and superheated phases of sodium are presented in tabular form and as a Mollier diagram. The density, thermal conductivity, viscosity, specific heat, and surface tension of the metal are given by tables and charts. The methods used in determining the properties are discussed.




Thermodynamic and Transport Properties of Sodium Liquid and Vapor


Book Description

Data have been reviewed to obtain thermodynamically consistent equations for thermodynamic and transport properties of saturated sodium liquid and vapor. Recently published Russian recommendations and results of equation of state calculations on thermophysical properties of sodium have been included in this critical assessment. Thermodynamic properties of sodium liquid and vapor that have been assessed include: enthalpy, heat capacity at constant pressure, heat capacity at constant volume, vapor pressure, boiling point, enthalpy of vaporization, density, thermal expansion, adiabatic and isothermal compressibility, speed of sound, critical parameters, and surface tension. Transport properties of liquid sodium that have been assessed include: viscosity and thermal conductivity. For each property, recommended values and their uncertainties are graphed and tabulated as functions of temperature. Detailed discussions of the analyses and determinations of the recommended equations include comparisons with recommendations given in other assessments and explanations of consistency requirements. The rationale and methods used in determining the uncertainties in the recommended values are also discussed.










Thermodynamic and Transport Properties of Organic Salts


Book Description

Thermodynamic and Transport Properties of Organic Salts is concerned with the thermodynamic and transport properties of organic salts, namely, pure salts, mixtures, and solutions. The transport properties of pure molten salts and binary mixtures of molten salts with organic ions are given, along with the transport properties of organic salts in aqueous solutions. This book is divided into three sections and opens with a discussion on the statistical treatment and of computer simulation methods for molten salts as well as their results for pressure-volume-temperature (PVT) data. The PVT data for organic molten salts determined experimentally are considered, and the thermal properties as well as the melting mechanism of pure salts are described. A method by which PVT data at high pressure can be estimated from those at low pressure with sufficiently high accuracy is also outlined. The next section deals with salt mixtures, their phase diagrams, and their transport properties. The final section looks at the transport properties of organic salts in aqueous solutions; thermodynamic quantities of micelle formation; and formation of lyotropic liquid crystals by organic salts. Two appendixes showing the structure of the pure solids and the use of the melts in electrochemical studies are included. This monograph will be a useful resource for organic chemists.







Calculation of Thermophysical Properties of Sodium. [LMFBR].


Book Description

The thermodynamic properties of sodium previously recommended by Padilla have been updated. As much as possible, the approach described by Padilla has been used. For sodium in the states of saturated liquid and vapor, subcooled liquid and superheated vapor, the following thermodynamic properties were determined: enthalpy, heat capacity (constant pressure and constant volume), pressure, density, thermal-expansion coefficient, and compressibility (adiabatic and isothermal). In addition to the above properties, thermodynamic properties including heat of fusion, heat of vaporization, surface tension, speed of sound and transport properties of themal conductivity, thermal diffusivity, emissivity, and viscosity were determined for saturated sodium.