Thermoelasticity


Book Description

Thermoelasticity, Second Edition reviews advances in thermoelasticity and covers topics ranging from stationary problems of thermoelasticity to variational theorems of stationary thermoelasticity; stresses due to the action of a discontinuous temperature field in an infinite elastic body; the action of heat sources in the elastic space; and thermal inclusions in an infinite disc and semi-infinite disc. Three different sets of differential equations describing the fields of strain and temperature are presented. This book is comprised of 12 chapters and begins with a discussion on basic relations and equations of thermoelasticity. Thermoelasticity is treated as a synthesis of the theory of elasticity and the theory of heat conduction. Some particular cases of thermoelasticity are then investigated, including stationary problems, the theory of thermal stresses, and classical dynamic elasticity. Dynamic effects due to the action of a non-stationary temperature field are examined, along with plane harmonic waves in an elastic space and thermal stresses in plates, shells, and viscoelastic bodies. The final chapter focuses on micropolar thermoelasticity, magnetothermoelasticity, and thermopiezoelectricity. This monograph will be of interest to physicists and mechanical engineers.




Dynamic Problems of Thermoelasticity


Book Description




Fractional Thermoelasticity


Book Description




Thermal Stresses—Advanced Theory and Applications


Book Description

This is an advanced modern textbook on thermal stresses. It serves a wide range of readers, in particular, graduate and postgraduate students, scientists, researchers in various industrial and government institutes, and engineers working in mechanical, civil, and aerospace engineering. This volume covers diverse areas of applied mathematics, continuum mechanics, stress analysis, and mechanical design. This work treats a number of topics not presented in other books on thermal stresses, for example: theory of coupled and generalized thermoelasticity, finite and boundary element method in generalized thermoelasticity, thermal stresses in functionally graded structures, and thermal expansions of piping systems. The book starts from basic concepts and principles, and these are developed to more advanced levels as the text progresses. Nevertheless, some basic knowledge on the part of the reader is expected in classical mechanics, stress analysis, and mathematics, including vector and cartesian tensor analysis. This 2nd enhanced edition includes a new chapter on Thermally Induced Vibrations. The method of stiffness is added to Chapter 7. The variational principle for the Green-Lindsay and Green-Naghdi models have been added to Chapter 2 and equations of motion and compatibility equations in spherical coordinates to Chapter 3. Additional problems at the end of chapters were added.




Problems and Solutions in Thermoelasticity and Magneto-thermoelasticity


Book Description

This book presents problems and solutions of the mathematical theories of thermoelasticity and magnetothermoelasticity. The classical, coupled and generalized theories are solved using the eigenvalue methodology. Different methods of numerical inversion of the Laplace transform are presented and their direct applications are illustrated. The book is very useful to those interested in continuum mechanics.




Progress in Aeronautical Sciences


Book Description

Progress in Aeronautical Sciences, Volume 10 provides information pertinent to the development in aeronautical sciences. This book discusses a variety of topics, including thermoelasticity, turbulent boundary, as well as the manufacturing methods, reliability, problem areas, and applications under development in fluidic systems. Organized into six chapters, this volume begins with an overview of the theoretical problems of elasticity. This text then discusses the state of research in the complex fields of turbulent boundary layers with fluid injections. Other chapters consider as well the problems of supersonic flow past wings and bodies. This book discusses as well the flow in hypersonic wakes in ionized gases. The reader is also introduced to the possible applications of the compressible turbulent boundary layer with fluid injection. The final chapter discusses the components used in fluidic systems, which are described with emphasis on their general system of operation and general properties. This book is a valuable resource for engineers.




IUTAM Symposium on Dynamics Modeling and Interaction Control in Virtual and Real Environments


Book Description

This volume contains the invited papers presented at the IUTAM Symposium on Multibody Dynamics and Interaction Control in Virtual and Real Environments held in Budapest, Hungary, June 7−11 2010. The symposium aimed to bring together specialists in the fields of multibody system modeling, contact/collision mechanics and control of mechanical systems. The offered topics included modeling aspects, mechanical and mathematical models, the question of neglections and simplifications, reduction of large systems, interaction with environment like air, water and obstacles, contact of all types, control concepts, control stability and optimization. Discussions between experts in these fields made it possible to exchange ideas about the recent advances in multibody system modeling and interaction control, as well as about the possible future trends. The presentations of recent scientific results may facilitate the interaction between scientific areas like system/control engineering and mechanical engineering. Papers on dynamics modeling and interaction control were selected to cover the main areas: mathematical modeling, dynamic analysis, friction modeling, solid and thermomechanical aspects, and applications. A significant outcome of the meeting was the opening towards applications that are of key importance to the future of nonlinear dynamics.




Thermal Stress and Strain in Microelectronics Packaging


Book Description

Microelectronics packaging and interconnection have experienced exciting growth stimulated by the recognition that systems, not just silicon, provide the solution to evolving applications. In order to have a high density/ performance/yield/quality/reliability, low cost, and light weight system, a more precise understanding of the system behavior is required. Mechanical and thermal phenomena are among the least understood and most complex of the many phenomena encountered in microelectronics packaging systems and are found on the critical path of neatly every design and process in the electronics industry. The last decade has witnessed an explosive growth in the research and development efforts devoted to determining the mechanical and thermal behaviors of microelectronics packaging. With the advance of very large scale integration technologies, thousands to tens of thousands of devices can be fabricated on a silicon chip. At the same time, demands to further reduce packaging signal delay and increase packaging density between communicat ing circuits have led to the use of very high power dissipation single-chip modules and multi-chip modules. The result of these developments has been a rapid growth in module level heat flux within the personal, workstation, midrange, mainframe, and super computers. Thus, thermal (temperature, stress, and strain) management is vital for microelectronics packaging designs and analyses. How to determine the temperature distribution in the elec tronics components and systems is outside the scope of this book, which focuses on the determination of stress and strain distributions in the electronics packaging.




Topics in Integral and Integro-Differential Equations


Book Description

This book includes different topics associated with integral and integro-differential equations and their relevance and significance in various scientific areas of study and research. Integral and integro-differential equations are capable of modelling many situations from science and engineering. Readers should find several useful and advanced methods for solving various types of integral and integro-differential equations in this book. The book is useful for graduate students, Ph.D. students, researchers and educators interested in mathematical modelling, applied mathematics, applied sciences, engineering, etc. Key Features • New and advanced methods for solving integral and integro-differential equations • Contains comparison of various methods for accuracy • Demonstrates the applicability of integral and integro-differential equations in other scientific areas • Examines qualitative as well as quantitative properties of solutions of various types of integral and integro-differential equations