The Thermomechanics of Plasticity and Fracture


Book Description

This book concentrates upon the mathematical theory of plasticity and fracture as opposed to the physical theory of these fields, presented in the thermomechanical framework.




Continuum Mechanics


Book Description

Most books on continuum mechanics focus on elasticity and fluid mechanics. But whether student or practicing professional, modern engineers need a more thorough treatment to understand the behavior of the complex materials and systems in use today. Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity offers a complete tour of the subject th




The Thermomechanics of Nonlinear Irreversible Behaviors


Book Description

In this invaluable book, macroscopic irreversible thermodynamics is presented in its realm and its splendor by appealing to the notion of internal variables of state. This applies to both fluids and solids with or without microstructures of mechanical or electromagnetic origin. This unmatched richness of essentially nonlinear behaviors is the result of the use of modern mathematical techniques such as convex analysis in a clear-cut framework which allows one to put under the umbrella of ?irreversible thermodynamics? behaviors which until now have been commonly considered either not easily covered, or even impossible to incorporate into such a framework.The book is intended for all students and researchers whose main concern is the rational modeling of complex and/or new materials with physical and engineering applications, such as those accounting for coupled-field, hysteresis, fracture, nonlinear-diffusion, and phase-transformation phenomena.




Thermomechanics of Viscoplasticity


Book Description

This work examines the geometrical and thermodynamical properties of mechanical behavior of metals and many polymeric and paste-like materials which are indispensable for developing a rational theory of viscoplasticity. The book is intended for researchers as well as Ph.D. students in the fields of material science and continuum mechanics. Anyone involved in the design of large scale industrial parts will also find this book highly useful. The concepts and results illustrated in this work are readily applicable to the rapidly developing field of biomechanics.




Mechanics of Natural Solids


Book Description

This book contains the lectures given at the 2009 Symposium on Mechanics in Natural Solids held in Horto, Greece. It delivers a paradigm for the interconnection of the mechanics of soil, rock, ice and snow and for the interdisciplinary nature of the research.




Elastoplasticity Theory


Book Description

Understanding the elastoplastic deformation of metals and geomaterials, including the constitutive description of the materials and analysis of structure undergoing plastic deformation, is an essential part of the background required by mechanical, civil, and geotechnical engineers as well as materials scientists. However, most books address the su




Volcanic Processes


Book Description

Volcanic eruptions are fascinating manifestations of the Earth's dynamic inte rior which has been cooling for the past several billion years. The planets of the solar system originated some 4.5 billion years ago from the same gas and dust cloud created by the big bang. Some of the gas collapsed by the gravitational force to form the Sun at the center, while the whirling disk of gas and dust around the Sun subsequently cooled and lumped together to form larger and larger lumps of materials or planetesimals. These planetesimals collided fre quently and violently and in the process liberated heat that melted the material in them. With time this material gradually cooled and formed the planets of the solar system. During the second half of the twentieth century the theory of plate tectonics of the Earth became established and demonstrated that our planet is covered with six large and many small plates of the lithosphere. These plates move over a highly viscous lower part of the Earth's upper mantle and contain the continental and oceanic crusts. The lower mantle extends below the upper mantle until it meets the core that is more than half the diameter of the entire globe (12,740 km). The inner core consists mostly of iron and its temperature is about 5000 kelvin, whereas the liquid outer core is turbulent, rotates faster than the mantle, consists primarily of iron, and is the source of the Earth's magnetic field.




Continuum Mechanics Through the Twentieth Century


Book Description

This overview of the development of continuum mechanics throughout the twentieth century is unique and ambitious. Utilizing a historical perspective, it combines an exposition on the technical progress made in the field and a marked interest in the role played by remarkable individuals and scientific schools and institutions on a rapidly evolving social background. It underlines the newly raised technical questions and their answers, and the ongoing reflections on the bases of continuum mechanics associated, or in competition, with other branches of the physical sciences, including thermodynamics. The emphasis is placed on the development of a more realistic modeling of deformable solids and the exploitation of new mathematical tools. The book presents a balanced appraisal of advances made in various parts of the world. The author contributes his technical expertise, personal recollections, and international experience to this general overview, which is very informative albeit concise.




Configurational Forces


Book Description

Exploring recent developments in continuum mechanics, Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics presents the general framework for configurational forces. It also covers a range of applications in engineering and condensed matter physics. The author presents the fundamentals of accepted standard continuum mechanics, before introducing Eshelby material stress, field theory, variational formulations, Noether’s theorem, and the resulting conservation laws. In the chapter on complex continua, he compares the classical perspective of B.D. Coleman and W. Noll with the viewpoint linked to abstract field theory. He then describes the important notion of local structural rearrangement and its relationship to Eshelby stress. After looking at the relevance of Eshelby stress in the thermodynamic description of singular interfaces, the text focuses on fracture problems, microstructured media, systems with mass exchanges, and electromagnetic deformable media. The concluding chapters discuss the exploitation of the canonical conservation law of momentum in nonlinear wave propagation, the application of canonical-momentum conservation law and material force in numerical schemes, and similarities of fluid mechanics and aerodynamics. Written by a long-time researcher in mechanical engineering, this book provides a detailed treatment of the theory of configurational forces—one of the latest and most fruitful advances in macroscopic field theories. Through many applications, it shows the depth and efficiency of this theory.




The Thermomechanics Of Nonlinear Irreversible Behaviours


Book Description

In this invaluable book, macroscopic irreversible thermodynamics is presented in its realm and its splendor by appealing to the notion of internal variables of state. This applies to both fluids and solids with or without microstructures of mechanical or electromagnetic origin. This unmatched richness of essentially nonlinear behaviors is the result of the use of modern mathematical techniques such as convex analysis in a clear-cut framework which allows one to put under the umbrella of “irreversible thermodynamics” behaviors which until now have been commonly considered either not easily covered, or even impossible to incorporate into such a framework.The book is intended for all students and researchers whose main concern is the rational modeling of complex and/or new materials with physical and engineering applications, such as those accounting for coupled-field, hysteresis, fracture, nonlinear-diffusion, and phase-transformation phenomena.