The Transmission-line Modeling (TLM) Method in Electromagnetics


Book Description

This book presents the topic in electromagnetics known as Transmission-Line Modeling or Matrix method-TLM. While it is written for engineering students at graduate and advanced undergraduate levels, it is also highly suitable for specialists in computational electromagnetics working in industry, who wish to become familiar with the topic. The main method of implementation of TLM is via the time-domain differential equations, however, this can also be via the frequency-domain differential equations. The emphasis in this book is on the time-domain TLM. Physical concepts are emphasized here before embarking onto mathematical development in order to provide simple, straightforward suggestions for the development of models that can then be readily programmed for further computations. Sections with strong mathematical flavors have been included where there are clear methodological advantages forming the basis for developing practical modeling tools. The book can be read at different depths depending on the background of the reader, and can be consulted as and when the need arises.




The Transmission-Line Modeling (TLM) Method in Electromagnetics


Book Description

This book presents the topic in electromagnetics known as Transmission-Line Modeling or Matrix method-TLM. While it is written for engineering students at graduate and advanced undergraduate levels, it is also highly suitable for specialists in computational electromagnetics working in industry, who wish to become familiar with the topic. The main method of implementation of TLM is via the time-domain differential equations, however, this can also be via the frequency-domain differential equations. The emphasis in this book is on the time-domain TLM. Physical concepts are emphasized here before embarking onto mathematical development in order to provide simple, straightforward suggestions for the development of models that can then be readily programmed for further computations. Sections with strong mathematical flavors have been included where there are clear methodological advantages forming the basis for developing practical modeling tools. The book can be read at different depths depending on the background of the reader, and can be consulted as and when the need arises.




The Transmission-line Modeling Method


Book Description

Written by renowned researcher Christos Christopoulos, this book covers a broad area of electromagnetics, including microwaves, antennas, radar cross-section, electromagnetic compatibility, and electromagnetic heating. In addition, you will find a clear explanation of modeling principles from lumped components through one-, two, and three-dimensional complex systems.




Numerical Techniques in Electromagnetics, Second Edition


Book Description

As the availability of powerful computer resources has grown over the last three decades, the art of computation of electromagnetic (EM) problems has also grown - exponentially. Despite this dramatic growth, however, the EM community lacked a comprehensive text on the computational techniques used to solve EM problems. The first edition of Numerical Techniques in Electromagnetics filled that gap and became the reference of choice for thousands of engineers, researchers, and students. The Second Edition of this bestselling text reflects the continuing increase in awareness and use of numerical techniques and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite difference time domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. The author also added a chapter on the method of lines. Numerical Techniques in Electromagnetics continues to teach readers how to pose, numerically analyze, and solve EM problems, give them the ability to expand their problem-solving skills using a variety of methods, and prepare them for research in electromagnetism. Now the Second Edition goes even further toward providing a comprehensive resource that addresses all of the most useful computation methods for EM problems.




Applied Computational Electromagnetics


Book Description

@EOI: AEI rEOMETPEI Epigram of the Academy of Plato in Athens Electromagnetism, the science of forces arising from Amber (HAEKTPON) and the stone of Magnesia (MArNHLIA), has been the fOWldation of major scientific breakthroughs, such as Quantum Mechanics and Theory of Relativity, as well as most leading edge technologies of the twentieth century. The accuracy of electromagnetic fields computations for engineering purposes has been significantly improved during the last decades, due to the deVelopment of efficient computational techniques and the availability of high performance computing. The present book is based on the contributions and discussions developed during the NATO Advanced Study Institute on Applied Computational Electromagnetics: State of the Art and Future Trends, which has taken place in Hellas, on the island of Samos, very close to the birthplace of Electromagnetism. The book covers the fundamental concepts, recent developments and advanced applications of Integral Equation and Metliod of Moments Techniques, Finite Element and BOWldary Element Methods, Finite Difference Time Domain and Transmission Line Methods. Furthermore, topics related to Computational Electromagnetics, such as Inverse Scattering, Semi-Analytical Methods and Parallel Processing Techniques are included. The collective presentation of the principal computational electromagnetics techniques, developed to handle diverse challenging leading edge technology problems, is expected to be useful to researchers and postgraduate students working in various topics of electromagnetic technologies.




Computational Methods in Electromagnetic Compatibility


Book Description

Offers a comprehensive overview of the recent advances in the area of computational electromagnetics Computational Method in Electromagnetic Compatibility offers a review of the most recent advances in computational electromagnetics. The authors—noted experts in the field—examine similar problems by taking different approaches related to antenna theory models and transmission line methods. They discuss various solution methods related to boundary integral equation techniques and finite difference techniques. The topics covered are related to realistic antenna systems including antennas for air traffic control or ground penetrating radar antennas; grounding systems (such as grounding systems for wind turbines); biomedical applications of electromagnetic fields (such as transcranial magnetic stimulation); and much more. The text features a number of illustrative computational examples and a reference list at the end of each chapter. The book is grounded in a rigorous theoretical approach and offers mathematical details of the formulations and solution methods. This important text: Provides a trade-off between a highly efficient transmission line approach and antenna theory models providing analysis of high frequency and transient phenomena Contains the newest information on EMC analysis and design principles Discusses electromagnetic field coupling to thin wire configurations and modeling in bioelectromagnetics Written for engineering students, senior researchers and practicing electrical engineers, Computational Method in Electromagnetic Compatibility provides a valuable resource in the design of equipment working in a common electromagnetic environment.




Transmission Line Matrix (TLM) in Computational Mechanics


Book Description

The finite element method reigns as the dominant technique for modeling mechanical systems. Originally developed to model electromagnetic systems, the Transmission Line Matrix (TLM) method proves to match, and in some cases exceed, the effectiveness of finite elements for modeling several types of physical systems. Transmission Line Matrix in Computational Mechanics provides a tutorial approach to applying TLM for modeling mechanical and other physical systems. Transmission Line Matrix in Computational Mechanics begins with the history of TLM, an introduction to the theory using mechanical engineering concepts, and the electromagnetic basics of TLM. The authors then demonstrate the theory for use in acoustic propagation, along with examples of MATLAB® code. The remainder of the book explores the application of TLM to problems in mechanics, specifically heat and mass transfer, elastic solids, simple deformation models, hydraulic systems, and computational fluid dynamics. A discussion of state-of-the-art techniques concludes the book, offering a look at the current research undertaken by the authors and other leading experts to overcome the limitations of TLM in applying the method to diverse types of systems. This valuable reference introduces students, engineers, and researchers to a powerful, accurate, and stable alternative to finite elements, providing case studies and examples to reinforce the concepts and illustrate the applications.




Antennas


Book Description

Practical, concise and complete reference for the basics of modern antenna design Antennas: from Theory to Practice discusses the basics of modern antenna design and theory. Developed specifically for engineers and designers who work with radio communications, radar and RF engineering, this book offers practical and hands-on treatment of antenna theory and techniques, and provides its readers the skills to analyse, design and measure various antennas. Key features: Provides thorough coverage on the basics of transmission lines, radio waves and propagation, and antenna analysis and design Discusses industrial standard design software tools, and antenna measurement equipment, facilities and techniques Covers electrically small antennas, mobile antennas, UWB antennas and new materials for antennas Also discusses reconfigurable antennas, RFID antennas, Wide-band and multi-band antennas, radar antennas, and MIMO antennas Design examples of various antennas are provided Written in a practical and concise manner by authors who are experts in antenna design, with experience from both academia and industry This book will be an invaluable resource for engineers and designers working in RF engineering, radar and radio communications, seeking a comprehensive and practical introduction to the basics of antenna design. The book can also be used as a textbook for advanced students entering a profession in this field.




Electromagnetic Compatibility


Book Description

Revised, updated, and expanded, Electromagnetic Compatibility: Methods, Analysis, Circuits, and Measurement, Third Edition provides comprehensive practical coverage of the design, problem solving, and testing of electromagnetic compatibility (EMC) in electrical and electronic equipment and systems. This new edition provides novel information on theory, applications, evaluations, electromagnetic computational programs, and prediction techniques available. With sixty-nine schematics providing examples for circuit level electromagnetic interference (EMI) hardening and cost effective EMI problem solving, this book also includes 1130 illustrations and tables. Including extensive data on components and their correct implementation, the myths, misapplication, misconceptions, and fallacies that are common when discussing EMC/EMI will also be addressed and corrected.




Time Domain Methods in Electrodynamics


Book Description

This book consists of contributions given in honor of Wolfgang J.R. Hoefer. Space and time discretizing time domain methods for electromagnetic full-wave simulation have emerged as key numerical methods in computational electromagnetics. Time domain methods are versatile and can be applied to the solution of a wide range of electromagnetic field problems. Computing the response of an electromagnetic structure to an impulsive excitation localized in space and time provides a comprehensive characterization of the electromagnetic properties of the structure in a wide frequency range. The most important methods are the Finite Difference Time Domain (FDTD) and the Transmission Line Matrix (TLM) methods. The contributions represent the state of the art in dealing with time domain methods in modern engineering electrodynamics for electromagnetic modeling in general, the Transmission Line Matrix (TLM) method, the application of network concepts to electromagnetic field modeling, circuit and system applications and, finally, with broadband devices, systems and measurement techniques.