Holland-Frei Cancer Medicine


Book Description

Holland-Frei Cancer Medicine, Ninth Edition, offers a balanced view of the most current knowledge of cancer science and clinical oncology practice. This all-new edition is the consummate reference source for medical oncologists, radiation oncologists, internists, surgical oncologists, and others who treat cancer patients. A translational perspective throughout, integrating cancer biology with cancer management providing an in depth understanding of the disease An emphasis on multidisciplinary, research-driven patient care to improve outcomes and optimal use of all appropriate therapies Cutting-edge coverage of personalized cancer care, including molecular diagnostics and therapeutics Concise, readable, clinically relevant text with algorithms, guidelines and insight into the use of both conventional and novel drugs Includes free access to the Wiley Digital Edition providing search across the book, the full reference list with web links, illustrations and photographs, and post-publication updates




The Tumor Stroma


Book Description

The identification of the role of tumor stroma—the tissue in the surroundings of cancer cells—in cancer development, progression, and metastasis has revolutionized the fields of cancer biology as well as cancer therapeutics. This book provides a comprehensive overview of this rapidly-evolving field including tumor stroma biology, therapeutic targets, molecular imaging, and advanced tumor stroma in vitro models. The book will serve as a handbook for graduate students, postgraduate researchers, pharmaceutical scientists, and biomedical engineers.




Physics of Cancer


Book Description

This revised second edition is improved linguistically with multiple increases of the number of figures and the inclusion of several novel chapters such as actin filaments during matrix invasion, microtubuli during migration and matrix invasion, nuclear deformability during migration and matrix invasion, and the active role of the tumor stroma in regulating cell invasion.




The Heterogeneity of Cancer Metabolism


Book Description

Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.




Tumor Organoids


Book Description

Cancer cell biology research in general, and anti-cancer drug development specifically, still relies on standard cell culture techniques that place the cells in an unnatural environment. As a consequence, growing tumor cells in plastic dishes places a selective pressure that substantially alters their original molecular and phenotypic properties.The emerging field of regenerative medicine has developed bioengineered tissue platforms that can better mimic the structure and cellular heterogeneity of in vivo tissue, and are suitable for tumor bioengineering research. Microengineering technologies have resulted in advanced methods for creating and culturing 3-D human tissue. By encapsulating the respective cell type or combining several cell types to form tissues, these model organs can be viable for longer periods of time and are cultured to develop functional properties similar to native tissues. This approach recapitulates the dynamic role of cell–cell, cell–ECM, and mechanical interactions inside the tumor. Further incorporation of cells representative of the tumor stroma, such as endothelial cells (EC) and tumor fibroblasts, can mimic the in vivo tumor microenvironment. Collectively, bioengineered tumors create an important resource for the in vitro study of tumor growth in 3D including tumor biomechanics and the effects of anti-cancer drugs on 3D tumor tissue. These technologies have the potential to overcome current limitations to genetic and histological tumor classification and development of personalized therapies.




Comparative Oncology


Book Description




Biomarkers of the Tumor Microenvironment


Book Description

This book reviews different aspects of the cancer microenvironment, and its regulation and importance for tumor progression. Practical applications, in terms of how biomarkers are increasingly included in therapy protocols, will also be discussed. Biomarkers of the Tumor Microenvironment: Basic Studies and Practical Applications is aimed at research pathologists in the cancer field, and also cancer researchers from other backgrounds, especially those using morphology techniques and models focusing on cross-talk between different cell types in tumors.




Gynecologic and Urologic Pathology


Book Description

This book highlights the similarities and differences in the pathology of the genital and urinary tracts in males and females.




Cancer Drug Delivery Systems Based on the Tumor Microenvironment


Book Description

This book proposes the importance of new systems of drug design and delivery based on cancer pathophysiology in addition to cancer molecular and cellular biology. The current studies based on molecular and cellular biology while ignoring pathophysiology and pharmacology may be leading the development of antitumor drugs in the wrong direction and wasting a lot of money. Although there have been numerous reports of genetic and phenotypic changes in tumors, a large body of pathological and clinical evidence supports the conclusion that there are no pivotal changes in tumor cells that distinguish them consistently and reliably from normal dividing cells. Unlike using antibiotics against bacterial infection, therefore, anticancer agents (ACAs) need to be delivered selectively to tumor tissues and should be kept there long enough to reproduce the concentrations they reach in the Petri dish, which is a closed space where the cytocidal effects of any anticancer agents (ACAs) including molecular targeting agents are very strong. In the body, however, administered ACAs are cleared with the passage of time. Furthermore, most human cancers possess abundant stroma that hinders the penetration of drugs into the tumor microenvironment. Therefore, to overcome these difficulties, novel drug delivery systems have been designed, such as nanoparticles and ACA conjugated antibodies to stromal components and to cancer cell surface antigens. These advances are described in this book after the first section, which describes core features of the pathophysiology of the cancer microenvironment, on which these new developments are based.




Interaction of Immune and Cancer Cells


Book Description

Now, it its second edition, this book summarizes the role of immune cells in tumor suppression and progression. It describes in detail why tumor cells can survive and spread in spite of the antitumor response of immune cells. Since immunotherapy is an attractive approach to cancer therapy, this book also provides information on the two main strategies: monoclonal antibodies and adaptive T cell immunotherapy, with a focus on recent human clinical trials. A newly added chapter also focuses on the role of Natural Killer cells in tumor progression. The book provides a state-of-the-art, comprehensive overview of immune cells in cancer and is an indispensable resource for researchers and practitioners working or lecturing in the field of cancer research and immunology.