The UNC-53-mediated Interactome


Book Description

This book gives an overview of various interactomes involved in dorsal ventral (DV) and anterior posterior (AP) guidance, their mechanisms of action, subcellular localizations, and functional roles. It will provide readers a better understanding of the development of the nervous system, which in turn will help to find cures to various neural and other disorders.​ In nematodes there are two types of guidance systems, including DV and AP guidance. The signaling process that guides the growth cones along the DV axis has remained intact in both vertebrates and invertebrates. The adaptor protein UNC-53 appears to play a part in migration along the AP axis in both worms and their human homologs. “Neuron Navigators” (NAV) are also involved in nervous system development ​




Genetics Fundamentals Notes


Book Description

This up-to-date and comprehensive textbook is essential reading material for advanced undergraduate and graduate students with a course module in genetics and developmental biology. The book provides clear, concise, and rigorous foundational concepts of genetics. It opens with an introductory chapter that provides an overview of genetics. The book includes separate and detailed sections on classical genetics, molecular genetics, and population genetics. It covers basic and foundational principles such as Mendelian genetics, chromosomal theory, transcription, translation, mutation, and gene regulation. It further includes chapters on advanced topics such as molecular genetic techniques, genomics, and applied molecular genetics. The concluding section includes chapters on population genetics, developmental genetics, and evolutionary genetics. The chapters are written by authors with in-depth knowledge of the field. The book is replete with interesting examples, case studies, questions and suggested reading. It is useful to students and course instructors in the field of human genetics, developmental biology, life sciences, and biotechnology. It is also meant for researchers who wish to further their understanding about the fundamental concepts of genetics.




C. Elegans Atlas


Book Description

Derived from the acclaimed online “WormAtlas,†C. elegansAtlas is a large-format, full-color atlas of the hermaphroditic form of the model organism C. elegans, known affectionately as “the worm†by workers in the field. Prepared by the editors of the WormAtlas Consortium, David H. Hall and Zeynep F. Altun, this book combines explanatory text with copious, labeled, color illustrations and electron micrographs of the major body systems of C. elegans. Also included are electron microscopy cross sections of the worm. This laboratory reference is essential for the working worm biologist, at the bench and at the microscope, and provides a superb companion to the C. elegansII monograph. It is also a valuable tool for investigators in the fields of developmental biology, neurobiology, reproductive biology, gene expression, and molecular biology.




The Yeast Two-hybrid System


Book Description

This volume, part of the Advances in Molecular Biology series, presents work by pioneers in the field and is the first publication devoted solely to the yeast two-hybrid system. It includes detailed protocols, practical advice on troubleshooting, and suggestions for future development. In addition, it illustrates how to construct an activation domain hybrid library, how to identify mutations that disrupt an interaction, and how to use the system in mammalian cells. Many of the contributors have developed new applications and variations of the technique.




Protein Phosphorylation in Human Health


Book Description

15 chapters on protein phosphorylation and human health written by expert scientists. Covers most important research hot points, such as Akt, AMPK and mTOR. Bridges the basic protein phosphorylation pathways with human health and diseases. Detailed and comprehensive text with excellent figure illustration.




Advances in Geroscience


Book Description

This book provides the first comprehensive overview of a new scientific discipline termed Geroscience. Geroscience examines the molecular and cellular mechanisms that might explain why aging is the main risk factor for most chronic diseases affecting the elderly population. Over the past few decades, researchers have made impressive progress in understanding the genetics, biology and physiology of aging. This book presents vital research that can help readers to better understand how aging is a critical malleable risk factor in most chronic diseases, which, in turn, could lead to interventions that can help increase a healthy lifespan, or ‘healthspan.’ The book begins with an analysis of the Geroscience hypothesis, as well as the epidemiological underpinnings that define aging as a candidate main risk factor for most chronic diseases. Next, each chapter focuses on one particular disease, or group of diseases, with an emphasis on how basic molecular and cellular biology might explain why aging is a major risk factor for it. Coverage in the book includes: cancer, cardiovascular disease, dementias, stroke, Parkinson's and Alzheimer’s diseases, osteoporosis, arthritis, diabetes asthma, emphysema, kidney disease, vision impairment, and AIDS/HIV. It finishes with a chapter on pain in the elderly and an overview of future steps needed to bring the newly acquired knowledge into the clinic and the public at large.




Tight Junctions in Cancer Metastasis


Book Description

There has been a dramatic increase in knowledge of tight junctions in the past decade. The molecular structure of tight junctions, cellular functions and the pathophysiological roles of tight junctions are becoming clear. Of the most important functions, the role of the cellular structure in cancer spread and drug delivery are increasingly realised. It is now clear that there are fundamental changes to tight junctions during the process of cancer development. Tight junctions are also critical to the metastatic process of cancer cells. The cellular structure is also crucial in drug therapies, namely, the permeability and bioavailability of the drugs, penetration of barriers such as the blood brain barrier. This current volume aims to summarise the current knowledge of tight junctions, their role in cancer and cancer metastasis and is of interest to scientists and clinicians.




Elucidation of Abiotic Stress Signaling in Plants


Book Description

​Abiotic stresses such as high temperature, low-temperature, drought, and salinity limit crop productivity worldwide. Understanding plant responses to these stresses is essential for rational engineering of crop plants. In Arabidopsis, the signal transduction pathways for abiotic stresses, light, several phytohormones and pathogenesis have been elucidated. A significant portion of plant genomes (most studies are Arabidopsis and rice genome) encodes for proteins involves in signaling such as receptor, sensors, kinases, phosphatases, transcription factors and transporters/channels. Despite decades of physiological and molecular effort, knowledge pertaining to how plants sense and transduce low and high temperature, low-water availability (drought), water-submergence and salinity signals is still a major question before plant biologists. One major constraint hampering our understanding of these signal transduction processes in plants has been the lack or slow pace of application of molecular genomic and genetics knowledge in the form of gene function. In the post-genomic era, one of the major challenges is investigation and understanding of multiple genes and gene families regulating a particular physiological and developmental aspect of plant life cycle. One of the important physiological processes is regulation of stress response, which leads to adaptation or adjustment in response to adverse stimuli. With the holistic understanding of the signaling pathways involving not only one gene family but multiple genes or gene families, plant biologists can lay a foundation for designing and generating future crops that can withstand the higher degree of environmental stresses (especially abiotic stresses, which are the major cause of crop loss throughout the world) without losing crop yield and productivity.




Mechanobiology


Book Description

An emerging field at the interface of biology and engineering, mechanobiology explores the mechanisms by which cells sense and respond to mechanical signals—and holds great promise in one day unravelling the mysteries of cellular and extracellular matrix mechanics to cure a broad range of diseases. Mechanobiology: Exploitation for Medical Benefit presents a comprehensive overview of principles of mechanobiology, highlighting the extent to which biological tissues are exposed to the mechanical environment, demonstrating the importance of the mechanical environment in living systems, and critically reviewing the latest experimental procedures in this emerging field. Featuring contributions from several top experts in the field, chapters begin with an introduction to fundamental mechanobiological principles; and then proceed to explore the relationship of this extensive force in nature to tissues of musculoskeletal systems, heart and lung vasculature, the kidney glomerulus, and cutaneous tissues. Examples of some current experimental models are presented conveying relevant aspects of mechanobiology, highlighting emerging trends and promising avenues of research in the development of innovative therapies. Timely and important, Mechanobiology: Exploitation for Medical Benefit offers illuminating insights into an emerging field that has the potential to revolutionise our comprehension of appropriate cell biology and the future of biomedical research.




Mechanisms of Cell Death


Book Description

Contains papers from a July 1998 conference held at the Queens College Campus of the City University of New York. Papers are arranged in sections on mechanisms and general considerations, programmed (developmental) cell death, and cell death and pathological and clinical situations. Specific topics