Handbook Of Synthetic Methodologies And Protocols Of Nanomaterials (In 4 Volumes)


Book Description

This comprehensive book set includes four volumes, covering the methods and protocols for the synthesis, fabrication, and characterization of nanomaterials. The first two books introduce the solution phase and gas synthesis approaches for nanomaterials, providing a number of most widely used protocols for each nanomaterial. An exhaustive list of nanomaterials are included, which are arranged according to the atomic number of the main element in the compound for easy search. For each material, the protocols are categorized according to the morphology of the nanostructure. A detailed reference is included in each protocol to point the readers to the source of the protocol. The third book describes many unconventional methods for the fabrication of nanostructures, including lithography and printing, self-assembly, chemical transformation, templated synthesis, electrospinning, laser induced synthesis, flame and plasma synthesis, and atomic layer deposition processes. The fourth book covers the typical methods for structural characterization of nanomaterials, including electron diffraction, electron microscopy, atomic force microscopy, scanning tunneling microscopy, X-ray diffraction, in-situ and operando X-ray techniques, X-ray absorption fine structure spectroscopy, static and dynamic light scattering, vibrational characterization methods, and NMR spectroscopy. In addition to the introduction of the basic operational principles of these tools, the book focuses explicitly on how they can be applied for analyzing nanomaterials. The handbook is a complete reference that can provide readers easily accessible information on how to synthesize and characterize nanomaterials desired for their target applications.




New Topics in Nanotechnology Research


Book Description

Nanotechnology is a 'catch-all' description of activities at the level of atoms and molecules that have applications in the real world. A manometer is a billionth of a meter, about 1/80,000 of the diameter of a human hair, or 10 times the diameter of a hydrogen atom. Nanotechnology is now used in precision engineering, new materials development as well as in electronics; electromechanical systems as well as mainstream biomedical applications in areas such as gene therapy, drug delivery and novel drug discovery techniques. This book presents the latest research in this frontier field.




Materials for Biomedical Engineering: Bioactive Materials, Properties, and Applications


Book Description

Materials for Biomedical Engineering: Bioactive Materials, Properties, and Applications introduces the reader to a broad range of the different types of bioactive materials used in biomedical engineering. All the main types of bioactive materials are discussed, with an emphasis placed on their synthesis, properties, performance, and potential for biomedical applications. Key chapters on modeling and surface modification and methods provide the step-by-step information needed by researchers. Important applications of bioactive materials, such as drug delivery, cancer therapy and clinical dentistry are also highlighted in detail. Final sections look at future perspectives for bioactive materials in biomedical engineering. - Provides a knowledge of the range of bioactive materials available, enabling the reader to make optimal materials selection decisions - Presents detailed information on current and proposed applications of the latest bioactive materials, thus empowering readers to design innovative products and processes - Covers methods and provides the detailed guidance needed by researchers to replicate key procedures and contribute to further research and discovery in this important field







Annual Review of Materials Research


Book Description







Ceramic Abstracts


Book Description







Colloidal Quantum Dots for Biomedical Applications


Book Description

Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.