Experimentation, Validation, and Uncertainty Analysis for Engineers


Book Description

Helps engineers and scientists assess and manage uncertainty at all stages of experimentation and validation of simulations Fully updated from its previous edition, Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes expanded coverage and new examples of applying the Monte Carlo Method (MCM) in performing uncertainty analyses. Presenting the current, internationally accepted methodology from ISO, ANSI, and ASME standards for propagating uncertainties using both the MCM and the Taylor Series Method (TSM), it provides a logical approach to experimentation and validation through the application of uncertainty analysis in the planning, design, construction, debugging, execution, data analysis, and reporting phases of experimental and validation programs. It also illustrates how to use a spreadsheet approach to apply the MCM and the TSM, based on the authors’ experience in applying uncertainty analysis in complex, large-scale testing of real engineering systems. Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes examples throughout, contains end of chapter problems, and is accompanied by the authors’ website www.uncertainty-analysis.com. Guides readers through all aspects of experimentation, validation, and uncertainty analysis Emphasizes the use of the Monte Carlo Method in performing uncertainty analysis Includes complete new examples throughout Features workable problems at the end of chapters Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition is an ideal text and guide for researchers, engineers, and graduate and senior undergraduate students in engineering and science disciplines. Knowledge of the material in this Fourth Edition is a must for those involved in executing or managing experimental programs or validating models and simulations.




Verification, Validation, and Testing of Engineered Systems


Book Description

Systems' Verification Validation and Testing (VVT) are carried out throughout systems' lifetimes. Notably, quality-cost expended on performing VVT activities and correcting system defects consumes about half of the overall engineering cost. Verification, Validation and Testing of Engineered Systems provides a comprehensive compendium of VVT activities and corresponding VVT methods for implementation throughout the entire lifecycle of an engineered system. In addition, the book strives to alleviate the fundamental testing conundrum, namely: What should be tested? How should one test? When should one test? And, when should one stop testing? In other words, how should one select a VVT strategy and how it be optimized? The book is organized in three parts: The first part provides introductory material about systems and VVT concepts. This part presents a comprehensive explanation of the role of VVT in the process of engineered systems (Chapter-1). The second part describes 40 systems' development VVT activities (Chapter-2) and 27 systems' post-development activities (Chapter-3). Corresponding to these activities, this part also describes 17 non-testing systems' VVT methods (Chapter-4) and 33 testing systems' methods (Chapter-5). The third part of the book describes ways to model systems' quality cost, time and risk (Chapter-6), as well as ways to acquire quality data and optimize the VVT strategy in the face of funding, time and other resource limitations as well as different business objectives (Chapter-7). Finally, this part describes the methodology used to validate the quality model along with a case study describing a system's quality improvements (Chapter-8). Fundamentally, this book is written with two categories of audience in mind. The first category is composed of VVT practitioners, including Systems, Test, Production and Maintenance engineers as well as first and second line managers. The second category is composed of students and faculties of Systems, Electrical, Aerospace, Mechanical and Industrial Engineering schools. This book may be fully covered in two to three graduate level semesters; although parts of the book may be covered in one semester. University instructors will most likely use the book to provide engineering students with knowledge about VVT, as well as to give students an introduction to formal modeling and optimization of VVT strategy.




Verification and Validation in Systems Engineering


Book Description

At the dawn of the 21st century and the information age, communication and c- puting power are becoming ever increasingly available, virtually pervading almost every aspect of modern socio-economical interactions. Consequently, the potential for realizing a signi?cantly greater number of technology-mediated activities has emerged. Indeed, many of our modern activity ?elds are heavily dependant upon various underlying systems and software-intensive platforms. Such technologies are commonly used in everyday activities such as commuting, traf?c control and m- agement, mobile computing, navigation, mobile communication. Thus, the correct function of the forenamed computing systems becomes a major concern. This is all the more important since, in spite of the numerous updates, patches and ?rmware revisions being constantly issued, newly discovered logical bugs in a wide range of modern software platforms (e. g. , operating systems) and software-intensive systems (e. g. , embedded systems) are just as frequently being reported. In addition, many of today’s products and services are presently being deployed in a highly competitive environment wherein a product or service is succeeding in most of the cases thanks to its quality to price ratio for a given set of features. Accordingly, a number of critical aspects have to be considered, such as the ab- ity to pack as many features as needed in a given product or service while c- currently maintaining high quality, reasonable price, and short time -to- market.




System Validation and Verification


Book Description

Historically, the terms validation and verification have been very loosely defined in the system engineering world, with predictable confusion. Few hardware or software testing texts even touch upon validation and verification, despite the fact that, properly employed, these test tools offer system and test engineers powerful techniques for identifying and solving problems early in the design process. Together, validation and verification encompass testing, analysis, demonstration, and examination methods used to determine whether a proposed design will satisfy system requirements. System Validation and Verification clear definitions of the terms and detailed information on using these fundamental tools for problem solving. It smoothes the transition between requirements and design by providing methods for evaluating the ability of a given approach to satisfy demanding technical requirements. With this book, system and test engineers and project managers gain confidence in their designs and lessen the likelihood of serious problems cropping up late in the program. In addition to explanations of the theories behind the concepts, the book includes practical methods for each step of the process, examples from the author's considerable experience, and illustrations and tables to support the ideas. Although not primarily a textbook, System Validation and Verification is based in part on validation and verification courses taught by the author and is an excellent supplemental reference for engineering students. In addition to its usefulness to system engineers, the book will be valuable to a wider audience including manufacturing, design, software , and risk management project engineers - anyone involved in large systems design projects.




Handbook of Validation in Pharmaceutical Processes, Fourth Edition


Book Description

Revised to reflect significant advances in pharmaceutical production and regulatory expectations, Handbook of Validation in Pharmaceutical Processes, Fourth Edition examines and blueprints every step of the validation process needed to remain compliant and competitive. This book blends the use of theoretical knowledge with recent technological advancements to achieve applied practical solutions. As the industry's leading source for validation of sterile pharmaceutical processes for more than 10 years, this greatly expanded work is a comprehensive analysis of all the fundamental elements of pharmaceutical and bio-pharmaceutical production processes. Handbook of Validation in Pharmaceutical Processes, Fourth Edition is essential for all global health care manufacturers and pharmaceutical industry professionals. Key Features: Provides an in-depth discussion of recent advances in sterilization Identifies obstacles that may be encountered at any stage of the validation program, and suggests the newest and most advanced solutions Explores distinctive and specific process steps, and identifies critical process control points to reach acceptable results New chapters include disposable systems, combination products, nano-technology, rapid microbial methods, contamination control in non-sterile products, liquid chemical sterilization, and medical device manufacture




Independent Verification and Validation


Book Description

Comprehensive and up-to-date, it covers the most vital part of software development, independent verification and validation. Presents a variety of methods that will ensure better quality, performance, cost and reliability of technical products and systems. Features numerous hints, tips and instructions for better interaction between verification and validation personnel, development engineers and managers. Includes 8 case histories ranging from major engineering systems through information systems. Many of the principles involved also apply to computer hardware as well as the fields of science and engineering.




Software Verification and Validation


Book Description

This book fills the critical need for an in-depth technical reference providing the methods and techniques for building and maintaining confidence in many varities of system software. The intent is to help develop reliable answers to such critical questions as: 1) Are we building the right software for the need? and 2) Are we building the software right? Software Verification and Validation: An Engineering and Scientific Approach is structured for research scientists and practitioners in industry. The book is also suitable as a secondary textbook for advanced-level students in computer science and engineering.




Accelerated Testing and Validation


Book Description

Accelerated Testing and Validation Methods is a cross-disciplinary guide that describes testing and validation tools and techniques throughout the product development process. Alex Porter not only focuses on what information is needed but also on what tools can produce the information in a timely manner. From the information provided, engineers and managers can determine what data is needed from a test and validation program and then how to select the best, most effective methods for obtaining the data.This book integrates testing and validation methods with a business perspective so readers can understand when, where, and how such methods can be economically justified. Testing and validation is about generating key information at the correct time so that sound business and engineering decisions can be made. Rather than simply describing various testing and validation techniques, the author offers readers guidance on how to select the best tools for a particular need, explains the appropriateness of different techniques to various situations and shows how to deploy them to ensure the desired information is accurately gathered. - Emphasizes developing a strategy for testing and validation - Teaches how to design a testing and validation program that deliver information in a timely and cost-effective manner




Verification, Validation and Testing in Software Engineering


Book Description

"This book explores different applications in V & V that spawn many areas of software development -including real time applications- where V & V techniques are required, providing in all cases examples of the applications"--Provided by publisher.




Verification and Validation in Scientific Computing


Book Description

Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study.