The Wings of Insects


Book Description




The Wing Veins of Insects


Book Description













Rhythms of Insect Evolution


Book Description

Documents morphology, taxonomy, phylogeny, evolutionary changes, and interactions of 23 orders of insects from the Middle Jurassic and Early Cretaceous faunas in Northern China This book showcases 23 different orders of insect fossils from the Mid Mesozoic period (165 to 125 Ma) that were discovered in Northeastern China. It covers not only their taxonomy and morphology, but also their potential implications on natural sciences, such as phylogeny, function, interaction, evolution, and ecology. It covers fossil sites; paleogeology; co-existing animals and plants in well-balanced eco-systems; insects in the spotlight; morphological evolution and functional development; and interactions of insects with co-existing plants, vertebrates, and other insects. The book also includes many elegant and beautiful photographs, line drawings, and 3-D reconstructions of fossilized and extant insects. Rhythms of Insect Evolution: Evidence from the Jurassic and Cretaceous in Northern China features chapter coverage of such insects as the: Ephemeroptera; Odonata; Blattaria; Isoptera; Orthoptera; Notoptera; Dermaptera; Chresmodidae; Phasmatodea; Plecoptera; Psocoptera; Homoptera; Heteroptera; Megaloptera; Raphidioptera; Neuroptera; Coleoptera; Hymenoptera Diptera; Mecoptera; Siphonaptera; Trichoptera and Lepidoptera. Combines academic natural science, popular science, and artistic presentation to illustrate rhythms of evolution for fossil insects from the Mid Mesozoic of Northern China Documents morphology, taxonomy, phylogeny, and evolutionary changes of 23 orders of insects from the Middle Jurassic and Early Cretaceous faunas in Northern China Presents interactions of insects with plants, vertebrates, and other insects based on well-preserved fossil evidence Uses photos of extant insects and plants, fossil and amber specimens, line drawings, and 3-D computer-generated reconstruction artworks to give readers clear and enjoyable impressions of the scientific findings Introduces insect-related stories from western and Chinese culture in text or sidebars to give global readers broader exposures Rhythms of Insect Evolution: Evidence from the Jurassic and Cretaceous in Northern China will appeal to entomologists, evolutionists, paleontologists, paleoecologists, and natural scientists.




The Theory of Critical Distances


Book Description

Critical distance methods are extremely useful for predicting fracture and fatigue in engineering components. They also represent an important development in the theory of fracture mechanics. Despite being in use for over fifty years in some fields, there has never been a book about these methods – until now. So why now? Because the increasing use of computer-aided stress analysis (by FEA and other techniques) has made these methods extremely easy to use in practical situations. This is turn has prompted researchers to re-examine the underlying theory with renewed interest. The Theory of Critical Distances begins with a general introduction to the phenomena of mechanical failure in materials: a basic understanding of solid mechanics and materials engineering is assumed, though appropriate introductory references are provided where necessary. After a simple explanation of how to use critical distance methods, and a more detailed exposition of the methods including their history and classification, the book continues by showing examples of how critical distance approaches can be applied to predict fracture and fatigue in different classes of materials. Subsequent chapters include some more complex theoretical areas, such as multiaxial loading and contact problems, and a range of practical examples using case studies of real engineering components taken from the author’s own consultancy work. The Theory of Critical Distances will be of interest to a range of readers, from academic researchers concerned with the theoretical basis of the subject, to industrial engineers who wish to incorporate the method into modern computer-aided design and analysis. Comprehensive collection of published data, plus new data from the author's own laboratories A simple 'how-to-do-it' exposition of the method, plus examples and case studies Detailed theoretical treatment Covers all classes of materials: metals, polymers, ceramics and composites Includes fracture, fatigue, fretting, size effects and multiaxial loading