Wind Science and Engineering


Book Description

This book provides an essential overview of wind science and engineering, taking readers on a journey through the origins, developments, fundamentals, recent advancements and latest trends in this broad field. Along the way, it addresses a diverse range of topics, including: atmospheric physics; meteorology; micrometeorology; climatology; the aerodynamics of buildings, aircraft, sailing boats, road vehicles and trains; wind energy; atmospheric pollution; soil erosion; snow drift, windbreaks and crops; bioclimatic city-planning and architecture; wind actions and effects on structures; and wind hazards, vulnerability and risk. In order to provide a comprehensive overview of wind and its manifold effects, the book combines scientific, descriptive and narrative chapters. The book is chiefly intended for students and lecturers, for those who want to learn about the genesis and evolution of this topic, and for the multitude of scholars whose work involves the wind.




The Wind Engineers


Book Description

The University of Florida has an ambitious goal: to harness the power of its faculty, staff, students, and alumni to solve some of society's most pressing problems and to become a resource for the state of Florida, the nation, and the world. Hurricanes and tornadoes--and the devastation they leave in their wake--are feared across the globe, but at the University of Florida these natural phenomena are a fascinating research opportunity. At UF's Engineering School of Sustainable Infrastructure and Environment, wind engineers like Forrest Masters and David Prevatt study storm systems and design buildings to better withstand the forces of nature. Follow their stories as they venture inside Hurricane Wilma with wind gauges, travel to Joplin, Missouri to assess the wind-damage from the most powerful tornado in more than a half century, and conduct experiments with the lab's infamous "Multi-Axis Wind Load Simulator," ominously nicknamed "The Judge." Yet the job of the UF wind engineers does not end there. They take their findings to the drafting table, build roofs and walls, and test shingles, shutters, and garage doors. Their goal: to make sure our houses are still standing, and we are safe, after the storm. The stories chronicled in GATORBYTES span all colleges and units across the UF campus. They detail the far-reaching impact of UF's research, technologies, and innovations--and the UF faculty members dedicated to them. Gatorbytes describe how UF is continuing to build on its strengths and extend the reach of its efforts so that it can help even more people in even more places.




Wind Wizard


Book Description

How the father of wind engineering helped make the world's most amazing buildings and bridges possible With Wind Wizard, Siobhan Roberts brings us the story of Alan Davenport (1932-2009), the father of modern wind engineering, who investigated how wind navigates the obstacle course of the earth's natural and built environments—and how, when not properly heeded, wind causes buildings and bridges to teeter unduly, sway with abandon, and even collapse. In 1964, Davenport received a confidential telephone call from two engineers requesting tests on a pair of towers that promised to be the tallest in the world. His resulting wind studies on New York's World Trade Center advanced the art and science of wind engineering with one pioneering innovation after another. Establishing the first dedicated "boundary layer" wind tunnel laboratory for civil engineering structures, Davenport enabled the study of the atmospheric region from the earth's surface to three thousand feet, where the air churns with turbulent eddies, the average wind speed increasing with height. The boundary layer wind tunnel mimics these windy marbled striations in order to test models of buildings and bridges that inevitably face the wind when built. Over the years, Davenport's revolutionary lab investigated and improved the wind-worthiness of the world's greatest structures, including the Sears Tower, the John Hancock Tower, Shanghai's World Financial Center, the CN Tower, the iconic Golden Gate Bridge, the Bronx-Whitestone Bridge, the Sunshine Skyway, and the proposed crossing for the Strait of Messina, linking Sicily with mainland Italy. Chronicling Davenport's innovations by analyzing select projects, this popular-science book gives an illuminating behind-the-scenes view into the practice of wind engineering, and insight into Davenport's steadfast belief that there is neither a structure too tall nor too long, as long as it is supported by sound wind science. Some images inside the book are unavailable due to digital copyright restrictions.




Wind Energy Engineering, Second Edition


Book Description

A fully up-to-date, comprehensive wind energy engineering resource This thoroughly updated reference offers complete details on effectively harnessing wind energy as a viable and economical power source. Globally recognized wind expert Pramod Jain clearly explains physics, meteorology, aerodynamics, wind measurement, wind turbines, and electricity. New energy policies and grid integration procedures are covered, including pre-deployment studies and grid modifications. Filled with diagrams, tables, charts, graphs, and statistics, Wind Energy Engineering, Second Edition, is a definitive guide to current developments and emerging technologies in wind energy. Wind Energy Engineering, Second Edition covers: The worldwide business of wind energy Wind energy basics Meteorological properties of wind and air Wind turbine aerodynamics Turbine blade element models and power curves Wind measurement and reporting Wind resource assessment Advanced resource assessment topics, including wake, losses, and uncertainty Wind turbine generator components Electricity and generator fundamentals Grid integration of wind energy Environmental impact of wind projects Financial modeling, planning, and execution of wind projects Wind energy policy and licensing guidelines




Winds Effects on Structures


Book Description

The damage caused by recent hurricanes has highlighted the interest in the construction of wind resistant structures. This book addresses developments in the field, and provides engineers with up-to-date methods and standards for construction




Wind Forces in Engineering


Book Description

Wind Forces in Engineering, Second Edition covers the various aspects, principles, and engineering applications of wind forces. This book is composed of 10 chapters and starts with an introduction to the history of wind forces. The subsequent chapters consider the wind speeds for various topographies; particular "shape factors" for general and special structures; oscillatory wind forces of a random or single-frequency type; and the dynamic response of structures to oscillatory wind forces. Other chapters deal with specific structures, such as buildings, bridges, towers, radar antennas, for static and dynamic wind loadings. The final chapter provides the Code of Practice which has been republished since 1972, including those for Australia, Canada, Great Britain and the U.S.A. These codes do not provide similar responses and are all essentially in a transitional state between the old static force concept and an improved statistical analysis to be based on more experimental evidence. This book will prove useful to engineers and researchers.




Advanced Structural Wind Engineering


Book Description

This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.




Wind Energy Systems


Book Description

Presenting the latest developments in the field, Wind Energy Systems: Control Engineering Design offers a novel take on advanced control engineering design techniques for wind turbine applications. The book introduces concurrent quantitative engineering techniques for the design of highly efficient and reliable controllers, which can be used to solve the most critical problems of multi-megawatt wind energy systems. This book is based on the authors’ experience during the last two decades designing commercial multi-megawatt wind turbines and control systems for industry leaders, including NASA and the European Space Agency. This work is their response to the urgent need for a truly reliable concurrent engineering methodology for the design of advanced control systems. Outlining a roadmap for such a coordinated architecture, the authors consider the links between all aspects of a multi-megawatt wind energy project, in which the wind turbine and the control system must be cooperatively designed to achieve an optimized, reliable, and successful system. Look inside for information about the QFT Control Toolbox for Matlab, the software developed by the author to facilitate the QFT robust control design (see also the link at codypower.com). The textbook’s big-picture insights can help students and practicing engineers control and optimize a wind energy system, in which large, flexible, aerodynamic structures are connected to a demanding variable electrical grid and work automatically under very turbulent and unpredictable environmental conditions. The book covers topics including robust QFT control, aerodynamics, mechanical and electrical dynamic modeling, economics, reliability, and efficiency. It also addresses standards, certification, implementation, grid integration, and power quality, as well as environmental and maintenance issues. To reinforce understanding, the authors present real examples of experimentation with commercial multi-megawatt direct-drive wind turbines, as well as on-shore, offshore, floating, and airborne wind turbine applications. They also offer a unique in-depth exploration of the quantitative feedback theory (QFT)—a proven, successful robust control technique for real-world applications—as well as advanced switching control techniques that help engineers exceed classical linear limitations.




Leif Catches the Wind


Book Description

Leif and his cousin Dana are best friends. When Dana moves away, Leif keeps in touch with her via email and soon learns that Dana's new house has a fish pond where the fish seem to be sick. Leif and Dana realize they might be able to use wind energy to solve the problem and ask for help from Leif's mother, a mechanical engineer. Leif and Dana design a windmill to save the fish. Readers are invited to create their own windmills and design blades to make their windmills spin.




Wind Turbine Engineering Design


Book Description