Theorems and Problems in Functional Analysis


Book Description

Even the simplest mathematical abstraction of the phenomena of reality the real line-can be regarded from different points of view by different mathematical disciplines. For example, the algebraic approach to the study of the real line involves describing its properties as a set to whose elements we can apply" operations," and obtaining an algebraic model of it on the basis of these properties, without regard for the topological properties. On the other hand, we can focus on the topology of the real line and construct a formal model of it by singling out its" continuity" as a basis for the model. Analysis regards the line, and the functions on it, in the unity of the whole system of their algebraic and topological properties, with the fundamental deductions about them obtained by using the interplay between the algebraic and topological structures. The same picture is observed at higher stages of abstraction. Algebra studies linear spaces, groups, rings, modules, and so on. Topology studies structures of a different kind on arbitrary sets, structures that give mathe matical meaning to the concepts of a limit, continuity, a neighborhood, and so on. Functional analysis takes up topological linear spaces, topological groups, normed rings, modules of representations of topological groups in topological linear spaces, and so on. Thus, the basic object of study in functional analysis consists of objects equipped with compatible algebraic and topological structures.




Theorems and Problems in Functional Analysis


Book Description

Even the simplest mathematical abstraction of the phenomena of reality the real line-can be regarded from different points of view by different mathematical disciplines. For example, the algebraic approach to the study of the real line involves describing its properties as a set to whose elements we can apply" operations," and obtaining an algebraic model of it on the basis of these properties, without regard for the topological properties. On the other hand, we can focus on the topology of the real line and construct a formal model of it by singling out its" continuity" as a basis for the model. Analysis regards the line, and the functions on it, in the unity of the whole system of their algebraic and topological properties, with the fundamental deductions about them obtained by using the interplay between the algebraic and topological structures. The same picture is observed at higher stages of abstraction. Algebra studies linear spaces, groups, rings, modules, and so on. Topology studies structures of a different kind on arbitrary sets, structures that give mathe matical meaning to the concepts of a limit, continuity, a neighborhood, and so on. Functional analysis takes up topological linear spaces, topological groups, normed rings, modules of representations of topological groups in topological linear spaces, and so on. Thus, the basic object of study in functional analysis consists of objects equipped with compatible algebraic and topological structures.




Functional Analysis, Sobolev Spaces and Partial Differential Equations


Book Description

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.




Problems in Real and Functional Analysis


Book Description

It is generally believed that solving problems is the most important part of the learning process in mathematics because it forces students to truly understand the definitions, comb through the theorems and proofs, and think at length about the mathematics. The purpose of this book is to complement the existing literature in introductory real and functional analysis at the graduate level with a variety of conceptual problems (1,457 in total), ranging from easily accessible to thought provoking, mixing the practical and the theoretical aspects of the subject. Problems are grouped into ten chapters covering the main topics usually taught in courses on real and functional analysis. Each of these chapters opens with a brief reader's guide stating the needed definitions and basic results in the area and closes with a short description of the problems. - See more at: http://bookstore.ams.org/GSM-166/#sthash.ZMb1J6lg.dpuf It is generally believed that solving problems is the most important part of the learning process in mathematics because it forces students to truly understand the definitions, comb through the theorems and proofs, and think at length about the mathematics. The purpose of this book is to complement the existing literature in introductory real and functional analysis at the graduate level with a variety of conceptual problems (1,457 in total), ranging from easily accessible to thought provoking, mixing the practical and the theoretical aspects of the subject. Problems are grouped into ten chapters covering the main topics usually taught in courses on real and functional analysis. Each of these chapters opens with a brief reader's guide stating the needed definitions and basic results in the area and closes with a short description of the problems. The Problem chapters are accompanied by Solution chapters, which include solutions to two-thirds of the problems. Students can expect the solutions to be written in a direct language that they can understand; usually the most "natural" rather than the most elegant solution is presented. The Problem chapters are accompanied by Solution chapters, which include solutions to two-thirds of the problems. Students can expect the solutions to be written in a direct language that they can understand; usually the most “natural” rather than the most elegant solution is presented. - See more at: http://bookstore.ams.org/GSM-166/#sthash.ZMb1J6lg.dpufhe Problem chapters are accompanied by Solution chapters, which include solutions to two-thirds of the - See more at: http://bookstore.ams.org/GSM-166/#sthash.ZMb1J6lg.dpuft is generally believed that solving problems is the most important part of the learning process in mathematics because it forces students to truly understand the definitions, comb through the theorems and proofs, and think at length about the mathematics. The purpose of this book is to complement the existing literature in introductory real and functional analysis at the graduate level with a variety of - See more at: http://bookstore.ams.org/GSM-166/#sthash.ZMb1J6lg.dpufIt is generally believed that solving problems is the most important part of the learning process in mathematics because it forces students to truly understand the definitions, comb through the theorems and proofs, and think at length about the mathematics. The purpose of this book is to complement the existing literature in introductory real and functional analysis at the graduate level with a variety of conceptual problems (1,457 in total), ranging from easily accessible to thought provoking, mixing the practical and the theoretical aspects of the subject. Problems are grouped into ten chapters covering the main topics usually taught in courses on real and functional analysis. Each of these chapters opens with a brief reader's guide stating - See more at: http://bookstore.ams.org/GSM-166/#sthash.ZMb1J6lg.dpuf




Introductory Functional Analysis with Applications


Book Description

KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry




An Introduction to Nonlinear Functional Analysis and Elliptic Problems


Book Description

This self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems and displays how various approaches can easily be applied to a range of model cases. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.




Exercises in Functional Analysis


Book Description

This book contains almost 450 exercises, all with complete solutions; it provides supplementary examples, counter-examples, and applications for the basic notions usually presented in an introductory course in Functional Analysis. Three comprehensive sections cover the broad topic of functional analysis. A large number of exercises on the weak topologies is included.




Problems in Analysis


Book Description

These problems and solutions are offered to students of mathematics who have learned real analysis, measure theory, elementary topology and some theory of topological vector spaces. The current widely used texts in these subjects provide the background for the understanding of the problems and the finding of their solutions. In the bibliography the reader will find listed a number of books from which the necessary working vocabulary and techniques can be acquired. Thus it is assumed that terms such as topological space, u-ring, metric, measurable, homeomorphism, etc., and groups of symbols such as AnB, x EX, f: IR 3 X 1-+ X 2 - 1, etc., are familiar to the reader. They are used without introductory definition or explanation. Nevertheless, the index provides definitions of some terms and symbols that might prove puzzling. Most terms and symbols peculiar to the book are explained in the various introductory paragraphs titled Conventions. Occasionally definitions and symbols are introduced and explained within statements of problems or solutions. Although some solutions are complete, others are designed to be sketchy and thereby to give their readers an opportunity to exercise their skill and imagination. Numbers written in boldface inside square brackets refer to the bib liography. I should like to thank Professor P. R. Halmos for the opportunity to discuss with him a variety of technical, stylistic, and mathematical questions that arose in the writing of this book. Buffalo, NY B.R.G.




Functional Analysis


Book Description

It begins in Chapter 1 with an introduction to the necessary foundations, including the Arzelà–Ascoli theorem, elementary Hilbert space theory, and the Baire Category Theorem. Chapter 2 develops the three fundamental principles of functional analysis (uniform boundedness, open mapping theorem, Hahn–Banach theorem) and discusses reflexive spaces and the James space. Chapter 3 introduces the weak and weak topologies and includes the theorems of Banach–Alaoglu, Banach–Dieudonné, Eberlein–Šmulyan, Kre&ibreve;n–Milman, as well as an introduction to topological vector spaces and applications to ergodic theory. Chapter 4 is devoted to Fredholm theory. It includes an introduction to the dual operator and to compact operators, and it establishes the closed image theorem. Chapter 5 deals with the spectral theory of bounded linear operators. It introduces complex Banach and Hilbert spaces, the continuous functional calculus for self-adjoint and normal operators, the Gelfand spectrum, spectral measures, cyclic vectors, and the spectral theorem. Chapter 6 introduces unbounded operators and their duals. It establishes the closed image theorem in this setting and extends the functional calculus and spectral measure to unbounded self-adjoint operators on Hilbert spaces. Chapter 7 gives an introduction to strongly continuous semigroups and their infinitesimal generators. It includes foundational results about the dual semigroup and analytic semigroups, an exposition of measurable functions with values in a Banach space, and a discussion of solutions to the inhomogeneous equation and their regularity properties. The appendix establishes the equivalence of the Lemma of Zorn and the Axiom of Choice, and it contains a proof of Tychonoff's theorem. With 10 to 20 elaborate exercises at the end of each chapter, this book can be used as a text for a one-or-two-semester course on functional analysis for beginning graduate students. Prerequisites are first-year analysis and linear algebra, as well as some foundational material from the second-year courses on point set topology, complex analysis in one variable, and measure and integration.




Applied Functional Analysis


Book Description

The first part of a self-contained, elementary textbook, combining linear functional analysis, nonlinear functional analysis, numerical functional analysis, and their substantial applications with each other. As such, the book addresses undergraduate students and beginning graduate students of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world. Applications concern ordinary and partial differential equations, the method of finite elements, integral equations, special functions, both the Schroedinger approach and the Feynman approach to quantum physics, and quantum statistics. As a prerequisite, readers should be familiar with some basic facts of calculus. The second part has been published under the title, Applied Functional Analysis: Main Principles and Their Applications.