Problems & Solutions in Theoretical & Mathematical Physics: Introductory level


Book Description

This book provides a comprehensive collection of problems together with their detailed solutions in the field of Theoretical and Mathematical Physics. All modern fields in Theoretical and Mathematical Physics are covered. It is the only book which covers all the new techniques and methods in theoretical and mathematical physics.Third edition updated with: Exercises in: Hilbert space theory, Lie groups, Matrix-valued differential forms, Bose–Fermi operators and string theory. All other chapters have been updated with new problems and materials. Most chapters contain an introduction to the subject discussed in the text.




Theoretical and Mathematical Physics


Book Description

This updated and extended edition of the book combines the topics provided in the two parts of the previous editions as well as new topics. It is a comprehensive compilation covering most areas in mathematical and theoretical physics. The book provides a collection of problems together with their detailed solutions which will prove to be valuable to students as well as to researchers in the fields of mathematics, physics, engineering and other sciences. Each chapter provides a short introduction with the relevant definitions and notations. All relevant definitions are given. The topics range in difficulty from elementary to advanced. Almost all problems are solved in detail and most of the problems are self-contained. Stimulating supplementary problems are also provided in each chapter. Students can learn important principles and strategies required for problem solving. Teachers will also find this text useful as a supplement, since important concepts and techniques are developed in the problems. Introductory problems for both undergraduate and advanced undergraduate students are provided. More advanced problems together with their detailed solutions are collected, to meet the needs of graduate students and researchers. Problems included cover new fields in theoretical and mathematical physics such as tensor product, Lax representation, Bäcklund transformation, soliton equations, Hilbert space theory, uncertainty relation, entanglement, spin systems, Lie groups, Bose system, Fermi systems differential forms, Lie algebra valued differential forms, metric tensor fields, Hirota technique, Painlevé test, Bethe ansatz, Yang-Baxter relation, wavelets, gauge theory, differential geometry, string theory, chaos, fractals, complexity, ergodic theory, etc. A number of software implementations are also provided.




Problems & Solutions in Group Theory for Physicists


Book Description

This book is aimed at graduate students and young researchers in physics who are studying group theory and its application to physics. It contains a short explanation of the fundamental knowledge and method, and the fundamental exercises for the method, as well as some important conclusions in group theory. This book is also suitable for some graduate students in theoretical chemistry.




Equations of Mathematical Physics


Book Description

Mathematical physics plays an important role in the study of many physical processes — hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced undergraduate- or graduate-level text considers only those problems leading to partial differential equations. Contents: I. Classification of Partial Differential Equations II. Evaluations of the Hyperbolic Type III. Equations of the Parabolic Type IV. Equations of Elliptic Type V. Wave Propagation in Space VI. Heat Conduction in Space VII. Equations of Elliptic Type (Continuation) The authors — two well-known Russian mathematicians — have focused on typical physical processes and the principal types of equations dealing with them. Special attention is paid throughout to mathematical formulation, rigorous solutions, and physical interpretation of the results obtained. Carefully chosen problems designed to promote technical skills are contained in each chapter, along with extremely useful appendixes that supply applications of solution methods described in the main text. At the end of the book, a helpful supplement discusses special functions, including spherical and cylindrical functions.




A Collection of Problems on the Equations of Mathematical Physics


Book Description

The extensive application of modern mathematical teehniques to theoretical and mathematical physics requires a fresh approach to the course of equations of mathematical physics. This is especially true with regards to such a fundamental concept as the 80lution of a boundary value problem. The concept of a generalized solution considerably broadens the field of problems and enables solving from a unified position the most interesting problems that cannot be solved by applying elassical methods. To this end two new courses have been written at the Department of Higher Mathematics at the Moscow Physics anrl Technology Institute, namely, "Equations of Mathematical Physics" by V. S. Vladimirov and "Partial Differential Equations" by V. P. Mikhailov (both books have been translated into English by Mir Publishers, the first in 1984 and the second in 1978). The present collection of problems is based on these courses and amplifies them considerably. Besides the classical boundary value problems, we have ineluded a large number of boundary value problems that have only generalized solutions. Solution of these requires using the methods and results of various branches of modern analysis. For this reason we have ineluded problems in Lebesgue in tegration, problems involving function spaces (especially spaces of generalized differentiable functions) and generalized functions (with Fourier and Laplace transforms), and integral equations.




Mathematical Physics


Book Description

This textbook is aimed at advanced undergraduate and graduate students interested in learning the fundamental mathematical concepts and tools widely used in different areas of physics. The author draws on a vast teaching experience, and presents a comprehensive and self-contained text which explains how mathematics intertwines with and forms an integral part of physics in numerous instances. Rather than emphasizing rigorous proofs of theorems, specific examples and physical applications (such as fluid dynamics, electromagnetism, quantum mechanics, etc.) are invoked to illustrate and elaborate upon the relevant mathematical techniques. The early chapters of the book introduce different types of functions, vectors and tensors, vector calculus, and matrices. In the subsequent chapters, more advanced topics like linear spaces, operator algebras, special functions, probability distributions, stochastic processes, analytic functions, Fourier series and integrals, Laplace transforms, Green's functions and integral equations are discussed. The book also features about 400 exercises and solved problems interspersed throughout the text at appropriate junctures, to facilitate the logical flow and to test the key concepts. Overall this book will be a valuable resource for a wide spectrum of students and instructors of mathematical physics.




Physics for Mathematicians


Book Description




A Course in Modern Mathematical Physics


Book Description

This textbook, first published in 2004, provides an introduction to the major mathematical structures used in physics today.




Problem Book in Quantum Field Theory


Book Description

The Problem Book in Quantum Field Theory contains about 200 problems with solutions or hints that help students to improve their understanding and develop skills necessary for pursuing the subject. It deals with the Klein-Gordon and Dirac equations, classical field theory, canonical quantization of scalar, Dirac and electromagnetic fields, the processes in the lowest order of perturbation theory, renormalization and regularization. The solutions are presented in a systematic and complete manner. The material covered and the level of exposition make the book appropriate for graduate and undergraduate students in physics, as well as for teachers and researchers.




Theoretical And Mathematical Physics: Problems And Solutions


Book Description

'This is an excellent, well-written and very comprehensive book covering many topics of mathematics and physics. An exhaustive collection of problems with detailed solutions that may be valuable to students and young researchers in several fields, ranging from Mathematics to Quantum Physics is presented … I found the book helpful in regards to several subjects that are not covered in other mathematical physics introductory textbooks.'Contemporary PhysicsThis updated and extended edition of the book combines the topics provided in the two parts of the previous editions as well as new topics. It is a comprehensive compilation covering most areas in mathematical and theoretical physics. The book provides a collection of problems together with their detailed solutions which will prove to be valuable to students as well as to researchers in the fields of mathematics, physics, engineering and other sciences.Each chapter provides a short introduction with the relevant definitions and notations. All relevant definitions are given. The topics range in difficulty from elementary to advanced. Almost all problems are solved in detail and most of the problems are self-contained. Stimulating supplementary problems are also provided in each chapter. Students can learn important principles and strategies required for problem solving. Teachers will also find this text useful as a supplement, since important concepts and techniques are developed in the problems. Introductory problems for both undergraduate and advanced undergraduate students are provided. More advanced problems together with their detailed solutions are collected, to meet the needs of graduate students and researchers. Problems included cover new fields in theoretical and mathematical physics such as tensor product, Lax representation, Bäcklund transformation, soliton equations, Hilbert space theory, uncertainty relation, entanglement, spin systems, Lie groups, Bose system, Fermi systems differential forms, Lie algebra valued differential forms, metric tensor fields, Hirota technique, Painlevé test, Bethe ansatz, Yang-Baxter relation, wavelets, gauge theory, differential geometry, string theory, chaos, fractals, complexity, ergodic theory, etc. A number of software implementations are also provided.