Theoretical Aspects and New Developments in Magneto-Optics


Book Description

The Advanced Study Institute on "Theoretical Aspects and New Developments in Magneto-Optics" was held at the University of Antwerpen (R.U.C.A.), from July 16 to July 28, 1979. The Institute was sponsored by NATO. Co-sponsors were: Agfa-Gevaert (Belgium), A.S.L.K. (Belgium), Bell Telephone Mfg. CO. (Belgium), Esso Belgium, Generale Bankmaatschappij (Belgium), General Motors (Belgium), I.B.M. (Belgium), Kredietbank (Belgium), Metallurgie Hoboken-Over pelt (Belgium), National Science Foundation (U.S.A). A total of 60 lecturers and participants attended the Institute. Scope of the Institute The magneto-optic phenomena are due to the change of the polarizability of a substance as a result of the splitting of the quantized energy bands. Most of these phenomena were discovered during the second half of this century. The understanding of the magneto-optical effects of all kinds, however, was brought by the advent of quantum mechanics, and since then important progress has been made in many fields of experimental methods and techniques.










Magneto-Optics


Book Description

Edited by two pioneers of magneto-optics, this book is designed to provide graduate students and researchers with an introductory state-of-the-art review of recent developments in this subject. The field encompasses important areas in solid-state physics, chemical physics and electrical engineering. The book deals with optical spectroscopy of paramagnetic, antiferromagnetic, and ferromagnetic materials, photo-induced magnetism and their applications to opto-electronics.




Recent Developments in Gauge Theories


Book Description

Almost all theories of fundamental interactions are nowadays based on the gauge concept. Starting with the historical example of quantum electrodynamics, we have been led to the successful unified gauge theory of weak and electromagnetic interactions, and finally to a non abelian gauge theory of strong interactions with the notion of permanently confined quarks. The. early theoretical work on gauge theories was devoted to proofs of renormalizability, investigation of short distance behaviour, the discovery of asymptotic freedom, etc . . , aspects which were accessible to tools extrapolated from renormalised perturbation theory. The second phase of the subject is concerned with the problem of quark confinement which necessitates a non-perturbative understanding of gauge theories. This phase has so far been marked by the introduc tion of ideas from geometry, topology and statistical mechanics in particular the theory of phase transitions. The 1979 Cargese Institute on "Recent Developments on Gauge Theories" was devoted to a thorough discussion of these non-perturbative, global aspects of non-abelian gauge theories. In the lectures and seminars reproduced in this volume the reader wilf find detailed reports on most of the important developments of recent times on non perturbative gauge fields by some of the leading experts and innovators in this field. Aside from lectures on gauge fields proper, there were lectures on gauge field concepts in condensed matter physics and lectures by mathematicians on global aspects of the calculus of variations, its relation to geometry and topology, and related topics.




Crystalline Semiconducting Materials and Devices


Book Description

This book is concerned primarily with the fundamental theory underlying the physical and chemical properties of crystalIine semiconductors. After basic introductory material on chemical bonding, electronic band structure, phonons, and electronic transport, some emphasis is placed on surface and interfacial properties, as weil as effects of doping with a variety of impurities. Against this background, the use of such materials in device physics is examined and aspects of materials preparation are discussed briefty. The level of presentation is suitable for postgraduate students and research workers in solid-state physics and chemistry, materials science, and electrical and electronic engineering. Finally, it may be of interest to note that this book originated in a College organized at the International Centre for Theoretical Physics, Trieste, in Spring 1984. P. N. Butcher N. H. March M. P. Tosi vii Contents 1. Bonds and Bands in Semiconductors 1 E. Mooser 1. 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 2. The Semiconducting Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 3. Bond Approach Versus Band Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 4. Construction of the Localized X by Linear Combination of n Atomic Orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1. 5. The General Octet Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1. 6. The Aufbau-Principle of the Crystal Structure of Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1. 7. A Building Principle for Polyanionic Structures . . . . . . . . . . . . . . . . . . . . . . 29 I. H. Structural Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1. 9. Chemical Bonds and Semiconductivity in Transition-Element Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 1. 10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2. Electronic Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 G. Grosso 2. 1. Two Different Strategies for Band-Structure Calculations . . . . . . . 55 2. 2. The Tight-Binding Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .




Molecular Electro-Optics


Book Description

The Advanced Study Institute on Molecular Electro-Optics was held on the campus of the Rensselaer Polytechnic Institute, Troy, New York, USA, from July 14 through July 24, 1980. This Advanced Study Institute was attended by sixteen invited lecturers and by forty-eight other participants. The present volume contains the texts of all of the invited lectures presented at the Institute. Although these lectures were supplemented by many animated discussions and by numerous short contributed papers, it was not possible to include these in the present volume. Molecular electro-optics is a difficult subject for research because it incorporates areas of theoretical physics such as elec tromagnetic theory and hydrodynamics of rotational diffusion, ex perimental physics such as lasers, optics, electric pulsers, and data collection via analog to digital converters and signal aver agers, and physical chemistry of macromolecules and colloids in solution (colloid science, biophysical chemistry, double layer polarization). This volume includes chapters on all of these subjects as well as introductions to magnets-optics and to elec trophoretic light scattering. The Advanced Study Institute was sponsored mainly by the North Atlantic Treaty Organization whose financial support made this meeting possible. Additional financial aid was supplied by the National Institutes of Health of the USA through their Fogarty International Center and the National Institute for Arthritis, Metabolism, and Digestive Diseases. Industrial contri buters consisted of the General Electric Company, Cober Electronics, and Malvern Scientific Corporation.




Report of NRL Progress


Book Description




Polarons and Excitons in Polar Semiconductors and Ionic Crystals


Book Description

The 1982 Antwerp Advanced Study Institute on "Physics of Polarons and Excitons in Polar Semiconductors and Ionic Crystals" took place from July 26 till August 5 at the Conference Center Priorij Corsen donk, a restored monastery, close to the city of Antwerp. It was the seventh Institute in our series which started in 1971. This Advanced Study Institute, which was held fifty years after Landau introduced the polaron concept, can be considered as the third major international symposium devoted to the physics of pola rons. The first such symposium took place in St. Andrews in 1962 under the title "Polarons and Excitons" [I]. The early theoretical developments related to polarons were reviewed in depth at this meeting; the derivation of the polaron hamiltonian by Frohlich, the Frohlich weak coupling theory (and the equivalent weak coupling canonical transformations), the Landau-Pekar and Bogolubov strong coupling theory and the Feynman polaron model formulated with his path integrals. The main emphasis was on the polaron self-energy, effective mass and mobility. From the experimental side the first evidence for polaron effects was provided by the pioneering cyclotron and mobility measurements o~ the silver halides by F. e. Brown and his group. Also the significance of polaron effects for the under standing of excitons in ionic crystals was a central topic in St. Andrews. The second Advanced Study Institute concerning polaron physics was organized at the University of Antwerp (R. U. C. A.




Characterization of Crystal Growth Defects by X-Ray Methods


Book Description

This book contains the proceedings of a NATO Advanced Study Institute entitled "Characterization of Crystal Growth Defects by X-ray Methods' held in the University of Durham, England from 29th August to 10th September 1979. The current interest in electronic materials, in particular silicon, gallium aluminium arsenide, and quartz, and the recent availability of synchrotron radiation for X-ray diffraction studies made this Advanced Study Institute particularly timely. Two main themes ran through the course: 1. A survey of the various types of defect occurring in crystal growth, the mechanism of their different methods of generation and their influence on the properties of relativelY perfect crystals. 2. A detailed and advanced course on the observation and characterization of such defects by X-ray methods. The main emphasis was on X-ray topographic techniques but a substantial amount of time was spent on goniometric techniques such as double crystal diffractometry and gamma ray diffraction. The presentation of material in this book reflects these twin themes. Section A is concerned with defects, Section C with techniques and in linking them. Section B provides a concise account of the basic theory necessary for the interpretation of X-ray topographs and diffractometric data. Although the sequence follows roughly the order of presentation at the Advanced Study Institute certain major changes have been made in order to improve the pedagogy. In particular, the first two chapters provide a vital, and seldom articulated, case for the need for characterization for crystals used in device technologies.