Theoretical Studies on Some Aspects of Molten Fuel-coolant Thermal Interaction


Book Description

Rapid generation of high pressures and mechanical work may result when thermal energy is transferred from the hot molten nuclear fuel to the coolant in an LMFBR accident. Such energetic thermal interactions are facilitated by the large heat transfer area created when molten fuel is fragmented in the coolant. Two aspects of the molten fuel coolant interaction problem are investigated: (1) the effects of gas/vapor blanketing of the fuel on post-fragmentation generation of pressure and mechanical work, and (2) the mechanism of the fragmentation of the molten fuel as it contacts the coolant. A model developed at Argonne National Laboratory to analyze fragmentation-induced energetic fuel-coolant interactions is modified to allow for gas/vapor blanketing of the fuel. The modified model is applied to a. hypothetical accident involving an FFTF subassembly. The results indicate that high shock pressures are not necessarily precluded by gas/vapor blanketing of the fuel. However, the generation of mechanical work is greatly reduced. A model is developed to simulate the dynamic growth of the vapor film around a hot spherical particle which has been suddenly immersed in a coolant. The model is applied to various cases of hot spheres in water and in sodium. A fragmentation mechanism based on the ability of the pressure pulsations of the vapor film to induce internal cavitation in the molten material is shown to predict the reported fragmentation behavior of drops of several hot molten materials in water and sodium.













Nuclear Safety


Book Description




Advances in Nuclear Science and Technology


Book Description

The Editors take pleasure in presenting a further vol ume in their Annual Review Series. The present volume con tains six papers that may be said to span from the theory of design to the practice of operation of modern nuclear power stations, therefore concentrating on nuclear energy as a source of electrical power. Starting with the most mathem atical, and proceeding in the direction of technology, we have the Chudley and Brough account of a new interpretation of (linear) Boltzmann transport theory in terms of the characteristic or ray approach. This seems to be new in application here, but of course the method is the child of many classical studies in the solution of partial differen tial equations and proves to remarkably well-suited to modern computers and their numerical bases. We might put the article by Dickson and Doncals on the design of heterogeneous cores next, with its significance for fast reactors of the future. The various "central worth" discrepancies, with their implication for safety and relia bility founded on, inter alia, the Doppler effect, have made this a major area for resolution: to see that we can develop design methods and codes that will reconcile theory and exper,. . . iment to the point at which theoretical designs could be accepted for building without the need for a full-scale mock up, as had to be done in the 1950's for the light water re actors.










National Union Catalog


Book Description

Includes entries for maps and atlases.




Advances in Heat Transfer


Book Description

Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than is allowablein either journals or texts. Volume 29 is a special volume devoted to nuclear reactor safety.