Semirings and Affine Equations over Them


Book Description

Semiring theory stands with a foot in each of two mathematical domains. The first being abstract algebra and the other the fields of applied mathematics such as optimization theory, the theory of discrete-event dynamical systems, automata theory, and formal language theory, as well as from the allied areas of theoretical computer science and theoretical physics. Most important applications of semiring theory in these areas turn out to revolve around the problem of finding the equalizer of a pair of affine maps between two semimodules. In this volume, we chart the state of the art on solving this problem, and present many specific cases of applications. This book is essentially the third part of a trilogy, along with Semirings and their Applications, and Power Algebras over Semirings, both written by the same author and published by Kluwer Academic Publishers in 1999. While each book can be read independently of the others, to get the full force of the theory and applications one should have access to all three. This work will be of interest to academic and industrial researchers and graduate students. The intent of the book is to bring the applications to the attention of the abstract mathematicians and to make the abstract mathematics available to those who are using these tools in an ad-hoc manner without realizing the full force of the theory.




A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences


Book Description

This volume presents a short guide to the extensive literature concerning semir ings along with a complete bibliography. The literature has been created over many years, in variety of languages, by authors representing different schools of mathematics and working in various related fields. In many instances the terminology used is not universal, which further compounds the difficulty of locating pertinent sources even in this age of the Internet and electronic dis semination of research results. So far there has been no single reference that could guide the interested scholar or student to the relevant publications. This book is an attempt to fill this gap. My interest in the theory of semirings began in the early sixties, when to gether with Bogdan W ~glorz I tried to investigate some algebraic aspects of compactifications of topological spaces, semirings of semicontinuous functions, and the general ideal theory for special semirings. (Unfortunately, local alge braists in Poland told me at that time that there was nothing interesting in investigating semiring theory because ring theory was still being developed). However, some time later we became aware of some similar investigations hav ing already been done. The theory of semirings has remained "my first love" ever since, and I have been interested in the results in this field that have been appearing in literature (even though I have not been active in this area myself).




Positive Systems: Theory and Applications


Book Description

The proceedings of the First Multidisciplinary International Symposium on Positive Systems Theory and Applications (POSTA 2003) held in Rome, Italy, August 28-30, 2003. Positive Systems are systems in which the relevant variables assume nonnegative values. These systems are quite common in applications where variables represent positive quantities such as populations, goods, money, time, data packets flowing in a network, densities of chemical species, probabilities, etc. The aim of the symposium was to join together researchers working in the different areas related to positive systems such as telecommunications, economy, biomedicine, chemistry and physics in order to provide a multidisciplinary forum where they have the opportunity to exchange ideas and compare results in a unifying framework.




Developments in Language Theory


Book Description

This book constitutes the refereed proceedings of the 7th International Conference on Developments in Language Theory, DLT 2003, held in Szeged, Hungary, in July 2003. The 27 revised full papers presented together with 7 invited papers were carefully reviewed and selected from 57 submissions. All current aspects in language theory are addressed, in particular grammars, acceptors, and transducers for strings, trees, graphs, arrays, etc; algebraic theories for automata and languages; combinatorial properties of words and languages; formal power series; decision problems; efficient algorithms for automata and languages; and relations to complexity theory and logic, picture description and analysis, DNA computing, quantum computing, cryptography, and concurrency.




Handbook of Linear Algebra, Second Edition


Book Description

With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters. New to the Second Edition Separate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of matrices, generalized inverses, matrices over finite fields, invariant subspaces, representations of quivers, and spectral sets New chapters on combinatorial matrix theory topics, such as tournaments, the minimum rank problem, and spectral graph theory, as well as numerical linear algebra topics, including algorithms for structured matrix computations, stability of structured matrix computations, and nonlinear eigenvalue problems More chapters on applications of linear algebra, including epidemiology and quantum error correction New chapter on using the free and open source software system Sage for linear algebra Additional sections in the chapters on sign pattern matrices and applications to geometry Conjectures and open problems in most chapters on advanced topics Highly praised as a valuable resource for anyone who uses linear algebra, the first edition covered virtually all aspects of linear algebra and its applications. This edition continues to encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, and applications of linear algebra to various disciplines while also covering up-to-date software packages for linear algebra computations.




Idempotent Mathematics and Mathematical Physics


Book Description

Idempotent mathematics is a rapidly developing new branch of the mathematical sciences that is closely related to mathematical physics. The existing literature on the subject is vast and includes numerous books and journal papers. A workshop was organized at the Erwin Schrodinger Institute for Mathematical Physics (Vienna) to give a snapshot of modern idempotent mathematics. This volume contains articles stemming from that event. Also included is an introductory paper by G. Litvinov and additional invited contributions. The resulting volume presents a comprehensive overview of the state of the art. It is suitable for graduate students and researchers interested in idempotent mathematics and tropical mathematics.




Tropical and Idempotent Mathematics


Book Description

This volume is a collection of papers from the International Conference on Tropical and Idempotent Mathematics, held in Moscow, Russia in August 2007. This is a relatively new branch of mathematical sciences that has been rapidly developing and gaining popularity over the last decade. Tropical mathematics can be viewed as a result of the Maslov dequantization applied to 'traditional' mathematics over fields. Importantly, applications in econophysics and statistical mechanics lead to an explanation of the nature of financial crises. Another original application provides an analysis of instabilities in electrical power networks. Idempotent analysis, tropical algebra, and tropical geometry are the building blocks of the subject. Contributions to idempotent analysis are focused on the Hamilton-Jacobi semigroup, the max-plus finite element method, and on the representations of eigenfunctions of idempotent linear operators. Tropical algebras, consisting of plurisubharmonic functions and their germs, are examined. The volume also contains important surveys and research papers on tropical linear algebra and tropical convex geometry.







STACS 97


Book Description

This book constitutes the refereed proceedings of the 14th Annual Symposium on Theoretical Aspects of Computer Science, STACS 97, held in Lübeck, Germany, in February/March 1997. The 46 revised full papers included were carefully selected from a total of 139 submissions; also included are three invited full papers. The papers presented span the whole scope of theoretical computer science. Among the topics covered are, in particular, algorithms and data structures, computational complexity, automata and formal languages, structural complexity, parallel and distributed systems, parallel algorithms, semantics, specification and verification, logic, computational geometry, cryptography, learning and inductive inference.




Handbook of Linear Algebra


Book Description

The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessibl