Theories of elastic plates


Book Description

The present monograph deals with refined theories of elastic plates in which both bending and transverse shear effects are taken into account and with some of their applications. Generally these more exact theories result in inte gration problems of the sixth order; consequently, three mutually independent boundary conditions at each edge of the plate are required. This is in perfect agreement with the conclusions of the theory of elasticity. The expressions for shearing forces following from refined theories are then valid for the whole investigated region including its boundary where the corresponding boundary conditions for these shearing forces can be prescribed. Quite different seems to be the situation in the classical Kirchhoff-Love's theory in which the influence of transverse shearing strains is neglected. Owing to this simplification the governing differential equation developed by the classical theory is of the fourth order only; consequently, the number of boundary conditions appurtenant to the applied mode of support appears now to be in disagreement with the order of the valid governing equation. Then, limiting the validity of the expressions for shearing forces to the open region of the middle plane and introducing the notion of the so called fictitious Kirchhoff's shearing forces for the boundary of the plate, three actual boundary conditions at each edge of the plate have to be replaced by two approximate conditions transformed in the Kirchhoff's sense.




Elementary Theory of Elastic Plates


Book Description

Elementary Theory of Elastic Plates deals with plate theory, particularly on the elastic behavior of initially flat thin plates subjected to loads, producing deflexions. This book discusses rectangular plates and circular plates subjected to different types of load conditions. This text describes the bending moment and curvature of beams, and gives the formula of principal axes, where the location of a neutral axis that experiences zero stress and strain, can be found. This book also notes how calculations can show small or negligible deflexions. The text discusses Possion's ratio effect and the Mohr's circle relationship. This text analyzes the various loads acting on different parts of the rectangular plate using the Navier method; the Levy's method is taken up when considerations are on other forms of boundary support on the rectangular plate. This book then addresses the circular plate that experiences bending moments and curvatures when it is placed under radially symmetric loads. This text explains the equation that is applicable in a radially symmetric case. This book also addresses understanding approximations of energy in stability problems when there is bending and twisting as shown in a strut with a certain thickness, radial length of the arms, and length of the strut. Engineers, physicists, architects, and designers of industrial equipment subject to heavy loads will appreciate the information found in this book.




Poisson Theory of Elastic Plates


Book Description

This groundbreaking book resolves the main lacuna in Kirchhoff theory of bending of plates in the Poisson-Kirchhoff boundary conditions paradox through the introduction of auxiliary problem governing transverse stresses. The book highlights new primary bending problem which is formulated and analyzed by the application of developed Poisson theory. Analysis with prescribed transverse stresses along faces of the plate, neglected in most reported theories, is presented with an additional term in displacements. The book presents a systematic procedure for the analysis of unsymmetrical laminates. This volume will be a useful reference for students, practicing engineers as well as researchers in applied mechanics.




Theory and Analysis of Elastic Plates and Shells, Second Edition


Book Description

This text presents a complete treatment of the theory and analysis of elastic plates. It provides detailed coverage of classic and shear deformation plate theories and their solutions by analytical as well as numerical methods for bending, buckling and natural vibrations. Analytical solutions are based on the Navier and Levy solution method, and numerical solutions are based on the Rayleigh-Ritz methods and finite element method. The author address a range of topics, including basic equations of elasticity, virtual work and energy principles, cylindrical bending of plates, rectangular plates and an introduction to the finite element method with applications to plates.




An Introduction to the Mathematical Theory of Vibrations of Elastic Plates


Book Description

This book by the late R D Mindlin is destined to become a classic introduction to the mathematical aspects of two-dimensional theories of elastic plates. It systematically derives the two-dimensional theories of anisotropic elastic plates from the variational formulation of the three-dimensional theory of elasticity by power series expansions. The uniqueness of two-dimensional problems is also examined from the variational viewpoint. The accuracy of the two-dimensional equations is judged by comparing the dispersion relations of the waves that the two-dimensional theories can describe with prediction from the three-dimensional theory. Discussing mainly high-frequency dynamic problems, it is also useful in traditional applications in structural engineering as well as provides the theoretical foundation for acoustic wave devices. Sample Chapter(s). Chapter 1: Elements of the Linear Theory of Elasticity (416 KB). Contents: Elements of the Linear Theory of Elasticity; Solutions of the Three-Dimensional Equations; Infinite Power Series of Two-Dimensional Equations; Zero-Order Approximation; First-Order Approximation; Intermediate Approximations. Readership: Researchers in mechanics, civil and mechanical engineering and applied mathematics.




Mathematical Elasticity, Volume II


Book Description

The Mathematical Elasticity set contains three self-contained volumes that together provide the only modern treatise on elasticity. They introduce contemporary research on three-dimensional elasticity, the theory of plates, and the theory of shells. Each volume contains proofs, detailed surveys of all mathematical prerequisites, and many problems for teaching and self-study. An extended preface and extensive bibliography have been added to each volume to highlight the progress that has been made since the original publication. The first book, Three-Dimensional Elasticity, covers the modeling and mathematical analysis of nonlinear three-dimensional elasticity. In volume two, Theory of Plates, asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear plate and shallow shell theories. The objective of Theory of Shells, the final volume, is to show how asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear shell theories: membrane, generalized membrane, and flexural. These classic textbooks are for advanced undergraduates, first-year graduate students, and researchers in pure or applied mathematics or continuum mechanics. They are appropriate for courses in mathematical elasticity, theory of plates and shells, continuum mechanics, computational mechanics, and applied mathematics in general.




Theories and Applications of Plate Analysis


Book Description

This book by a renowned structural engineer offers comprehensive coverage of both static and dynamic analysis of plate behavior, including classical, numerical, and engineering solutions. It contains more than 100 worked examples showing step by step how the various types of analysis are performed.




Theories of Plates and Shells


Book Description

Plate and shell theories experienced a renaissance in recent years. The potentials of smart materials, the challenges of adaptive structures, the demands of thin-film technologies and more on the one hand and the availability of newly developed mathematical tools, the tremendous increase in computer facilities and the improvement of commercial software packages on the other caused a reanimation of the scientific interest. In the present book the contributions of the participants of the EUROMECH Colloquium 444 "Critical Review of the Theories of Plates and Shells and New Applications" have been collected. The aim was to discuss the common roots of different plate and shell approaches, to review the current state of the art, and to develop future lines of research. Contributions were written by scientists with civil and mechanical engineering as well as mathematical and physical background.







Thin Plates and Shells


Book Description

Presenting recent principles of thin plate and shell theories, this book emphasizes novel analytical and numerical methods for solving linear and nonlinear plate and shell dilemmas, new theories for the design and analysis of thin plate-shell structures, and real-world numerical solutions, mechanics, and plate and shell models for engineering appli