Theories of Immune Networks


Book Description

For a long time, immunology has been dominated by the idea of a simple linear cause-effect relationship between the exposure to an antigen and the production of specific antibodies against that antigen. Clonal selection was the name of the theory based on this idea and it has provided the main concepts to account for the known features of the immune response. More recently, immunologists have discovered a wealth of new facts, in the form of different regulatory cells (helpers, suppressors, antigen presenting cells), genetic determinations of immune responses such as those involved in graft re jections, different molecular structures responsible for intercellular interactions such as interleukins, cytokins, idiotype-antiidiotype recognition and others. While furthering our understanding of the local interactions (molecular and cellular) in volved in the immune response, these discoveries have led to a questioning of the simplicities of the classical clonal selection theory. It is clear today that every single immune response is a cooperative phenomenon involving several different molecular and cellular interactions taking place in a coupled manner. In addition, cross reactivity to different antigens has shown that responses of the whole im mune system to different antigens are not completely isolated from one another and that the history of encounters with different antigens plays a crucial role in the maturation of the whole system. Thus, problems of complexity, generation of di versity and self-organization have entered the field of immunology.




Quantal Theory Of Immunity, The: The Molecular Basis Of Autoimmunity And Leukemia


Book Description

This book explains how the immune system functions, namely, how individual cells of the immune system make the decision to respond or not to respond to foreign microbes and molecules, and how the critical molecules function to trigger the cellular reactions in an all-or-none (quantal) manner. To date, there has not been a complete description of the immune system and its cells and molecules, primarily because most of the information has accumulated only in the last 40 years and our understanding has been expanding rapidly only in the last 20 years. It is now clear that the cells have evolved a way to “count” the number of foreign antigenic molecular “hits”, and they only react when a critical number of events have accumulated. Subsequently, control over the reaction is transferred to a systemic lymphocytotrophic hormone system that determines the tempo, magnitude and duration of the immune reaction.This book explains in detail how the immune system, cells and molecules work for the first time. With this understanding as a basis, the pathogenesis of autoimmunity can now be understood as a mutational usurpation of the genes encoding molecules that participate in a sensitive feedback regulatory control of the immune reaction. By comparison, malignant transformation is understood as a mutational usurpation of the genes encoding the molecules that control the quantal decision to proliferate, so that normal ligand/receptor cell growth control is circumvented./a




Immunological Computation


Book Description

Clearly, nature has been very effective in creating organisms that are capable of protecting themselves against a wide variety of pathogens such as bacteria, fungi, and parasites. The powerful information-processing capabilities of the immune system, such as feature extraction, pattern recognition, learning, memory, and its distributive nature prov




Portrait of the Immune System


Book Description

Using the published work of Nobel Laureate Niels Kaj Jerne, this book shows how he developd his ideas. The book is a compilation of his published work, but in fact it is much more than that. Whether the reader wants to read the book systematically, or only browse, it opens a fascinating world of hypotheses, theories, facts and vistas. His selection theory, his view of how immunological diversity is created, and his concept of lymphocytes interacting as a network, reveals Jerne's revolutionary spirit. The book ought to be a rich source of inspiration for everyone interested in science and how science is made.




Immunity-Based Systems


Book Description

After I came to know Jerne's network theory on the immune system, I became fascinated with the immune system as an information system. The main pro totypes for biological information systems have been the neural systems and the brain. However, the immune system is not only an interesting informa tion system but it may provide a design paradigm for artificial information systems. With such a consideration, I initiated a project titled "autonomous decentralized recognition mechanism of the immune network and its applica tion to distributed information processing" in 1990 under a Grant-in-Aid for Scientific Research on a Priority Area ("Autonomous Distributed Systems") supported by the Ministry of Education, Science, and Culture. During the project, I promoted the idea that the immune system could be a prototype of autonomous distributed systems. After the project, we organized an international workshop on immunity based systems in 1996 in conjunction with the International Conference on Multi-Agent Systems held in Kyoto, Japan. Recently, there have been several international conferences related to topics inspired by the immune system and an increasing number of research papers related to the topic. In writing this book, a decade after the project, I still believe that the immune system can be a prototype, a compact but sophisticated system that nature has shown us for building artificial information systems in this network age of the twenty-first century.




Janeway's Immunobiology


Book Description

The Janeway's Immunobiology CD-ROM, Immunobiology Interactive, is included with each book, and can be purchased separately. It contains animations and videos with voiceover narration, as well as the figures from the text for presentation purposes.




Aging


Book Description

Aging inspired a large number of theories trying to rationalize the aging process common to all living beings. In this publication the most important environmental and intrinsic mechanisms involved in the aging process and in its pathological consequences are reviewed. Furthermore theoretical and experimental evidence of the most important theoretical elements based on Darwinian evolution, cellular aging, role of cell membranes, free radicals and oxidative processes, receptor-mediated reactions, the extracellular matrix and immune functions as well as the most important environmental and intrinsic mechanisms involved in the aging process and in its pathological consequences are discussed. These presentations of theories and related experimental facts give a global overview of up to date concepts of the biology of the aging process and are of essential reading not only for specialists in this field but also for practitioners of scientific, medical, social and experimental sciences.




Introduction to Immunology


Book Description




Theoretical Immunology, Part One


Book Description

Assuming that the complex phenomena underlying the operation of the immune system may be better understood through the collaborative efforts of theorists and experimentalists viewing the same phenomena in different ways, the Sante Fe Institute and the Theoretical Division of Los Alamos National Laboratory cosponsored a workshop entitled "Theoretical Immunology". The workshop focused on themes spanning the field of immunology, with emphasis on areas where the theorists have made the most progress. This book covers the discussions a that workshop on the topics of immune surveillance, mathematical models of HIV infection, complexities of antigen-antibody systems, immune suppression and tolerance, and idiotypie networks. In each of these areas there is reason to believe that advances can be made either through interactions among experimentalists and theorists or through the critical look experimentalists and theorists will bring to bear upon one another's work.