Theories of Interval Arithmetic


Book Description

Scientists are, all the time, in a struggle with uncertainty which is always a threat to a trustworthy scientific knowledge. A very simple and natural idea, to defeat uncertainty, is that of enclosing uncertain measured values in real closed intervals. On the basis of this idea, interval arithmetic is constructed. The idea of calculating with intervals is not completely new in mathematics: the concept has been known since Archimedes, who used guaranteed lower and upper bounds to compute his constant Pi. Interval arithmetic is now a broad field in which rigorous mathematics is associated with scientific computing. This connection makes it possible to solve uncertainty problems that cannot be efficiently solved by floating-point arithmetic. Today, application areas of interval methods include electrical engineering, control theory, remote sensing, experimental and computational physics, chaotic systems, celestial mechanics, signal processing, computer graphics, robotics, and computer-assisted proofs. The purpose of this book is to be a concise but informative introduction to the theories of interval arithmetic as well as to some of their computational and scientific applications. Editorial Reviews "This new book by Hend Dawood is a fresh introduction to some of the basics of interval computation. It stops short of discussing the more complicated subdivision methods for converging to ranges of values, however it provides a bit of perspective about complex interval arithmetic, constraint intervals, and modal intervals, and it does go into the design of hardware operations for interval arithmetic, which is something still to be done by computer manufacturers." - Ramon E. Moore, (The Founder of Interval Computations) Professor Emeritus of Computer and Information Science, Department of Mathematics, The Ohio State University, Columbus, U.S.A. "A popular math-oriented introduction to interval computations and its applications. This short book contains an explanation of the need for interval computations, a brief history of interval computations, and main interval computation techniques. It also provides an impressive list of main practical applications of interval techniques." - Vladik Kreinovich, (International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems) Professor of Computer Science, University of Texas at El Paso, El Paso, Texas, U.S.A. "I am delighted to see one more Egyptian citizen re-entering the field of interval mathematics invented in this very country thousands years ago." - Marek W. Gutowski, Institute of Physics, Polish Academy of Sciences, Warszawa, Poland




Complex Interval Arithmetic and Its Applications


Book Description

The aim of this book is to present formulas and methods developed using complex interval arithmetic. While most of numerical methods described in the literature deal with real intervals and real vectors, there is no systematic study of methods in complex interval arithmetic. The book fills this gap. Several main subjects are considered: outer estimates for the range of complex functions, especially complex centered forms, the best approximations of elementary complex functions by disks, iterative methods for the inclusion by polynomial zeros including their implementation on parallel computers, the analysis of numerical stability of iterative methods by using complex interval arithmetic and numerical computation of curvilinear integrals with error bounds. Mainly new methods are presented developed over the last years, including a lot of very recent results by the authors some of which have not been published before.




Methods and Applications of Interval Analysis


Book Description

This book treats an important set of techniques that provide a mathematically rigorous and complete error analysis for computational results. It shows that interval analysis provides a powerful set of tools with direct applicability to important problems in scientific computing.




Introduction to Interval Analysis


Book Description

An update on the author's previous books, this introduction to interval analysis provides an introduction to INTLAB, a high-quality, comprehensive MATLAB toolbox for interval computations, making this the first interval analysis book that does with INTLAB what general numerical analysis texts do with MATLAB.




Interval Methods for Systems of Equations


Book Description

Mathematics of Computing -- Numerical Analysis.




Computer Arithmetic in Theory and Practice


Book Description

Computer Arithmetic in Theory and Practice deals with computer arithmetic and the various implementations of the entire arithmetic package on diverse processors, including microprocessors. It illustrates the importance of theoretical development in the sound implementation of arithmetic on computers, and argues that such an implementation requires the establishment of various isomorphisms between different definitions of arithmetic operations. Comprised of seven chapters, this volume begins with an introduction to the theory of computer arithmetic by giving an axiomatic characterization of the essential properties of sets and subsets; complete lattices and complete subnets; screens and roundings; and arithmetic operations. The discussion then turns to the concepts of a ringoid and a vectoid as well as those of ordered or weakly ordered ringoids and vectoids; interval arithmetic; and floating-point arithmetic. The operations in interval spaces are defined by means of semimorphisms. The final chapter shows how to embed the five basic data types (integer, real, complex, real interval, and complex interval) together with the arithmetic operations that are defined for all of these types into existing higher programming languages. This book will be helpful to students and practitioners in the fields of computer science and applied mathematics.




Scientific Computing, Validated Numerics, Interval Methods


Book Description

Scan 2000, the GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics and Interval 2000, the International Conference on Interval Methods in Science and Engineering were jointly held in Karlsruhe, September 19-22, 2000. The joint conference continued the series of 7 previous Scan-symposia under the joint sponsorship of GAMM and IMACS. These conferences have traditionally covered the numerical and algorithmic aspects of scientific computing, with a strong emphasis on validation and verification of computed results as well as on arithmetic, programming, and algorithmic tools for this purpose. The conference further continued the series of 4 former Interval conferences focusing on interval methods and their application in science and engineering. The objectives are to propagate current applications and research as well as to promote a greater understanding and increased awareness of the subject matters. The symposium was held in Karlsruhe the European cradle of interval arithmetic and self-validating numerics and attracted 193 researchers from 33 countries. 12 invited and 153 contributed talks were given. But not only the quantity was overwhelming we were deeply impressed by the emerging maturity of our discipline. There were many talks discussing a wide variety of serious applications stretching all parts of mathematical modelling. New efficient, publicly available or even commercial tools were proposed or presented, and also foundations of the theory of intervals and reliable computations were considerably strengthened.




Applied Interval Analysis


Book Description

At the core of many engineering problems is the solution of sets of equa tions and inequalities, and the optimization of cost functions. Unfortunately, except in special cases, such as when a set of equations is linear in its un knowns or when a convex cost function has to be minimized under convex constraints, the results obtained by conventional numerical methods are only local and cannot be guaranteed. This means, for example, that the actual global minimum of a cost function may not be reached, or that some global minimizers of this cost function may escape detection. By contrast, interval analysis makes it possible to obtain guaranteed approximations of the set of all the actual solutions of the problem being considered. This, together with the lack of books presenting interval techniques in such a way that they could become part of any engineering numerical tool kit, motivated the writing of this book. The adventure started in 1991 with the preparation by Luc Jaulin of his PhD thesis, under Eric Walter's supervision. It continued with their joint supervision of Olivier Didrit's and Michel Kieffer's PhD theses. More than two years ago, when we presented our book project to Springer, we naively thought that redaction would be a simple matter, given what had already been achieved . . .




Interval Analysis


Book Description

This self-contained text is a step-by-step introduction and a complete overview of interval computation and result verification, a subject whose importance has steadily increased over the past many years. The author, an expert in the field, gently presents the theory of interval analysis through many examples and exercises, and guides the reader from the basics of the theory to current research topics in the mathematics of computation. Contents Preliminaries Real intervals Interval vectors, interval matrices Expressions, P-contraction, ε-inflation Linear systems of equations Nonlinear systems of equations Eigenvalue problems Automatic differentiation Complex intervals