Theory and Application of Statistical Energy Analysis


Book Description

This up-to-date second edition provides a comprehensive examination of the theory and application of Statistical Energy Analysis (SEA) in acoustics and vibration. Complete with examples and data taken from real problems this unique book also exploresthe influence of computers on SEA and emphasizes computer based SEA calculations. In addition to a discussion of the relationship between SEA and other procedures used in response estimation, Theory and Application of Statistical Energy Anlaysis, SecondEdition, explores the basic relationships between model and wave descriptions of systems.




Theory and Application of Statistical Energy Analysis, 2nd Edition


Book Description

This up-to-date second edition provides a comprehensive examination of the theory and application of Statistical Energy Analysis (SEA) in acoustics and vibration. Complete with examples and data taken from real problems this unique book also explores the influence of computers on SEA and emphasizes computer based SEA calculations. In addition to a discussion of the relationship between SEA and other procedures used in response estimation, Theory and Application of Statistical Energy Anlaysis, Second Edition, explores the basic relationships between model and wave descriptions of systems.







Statistical Energy Analysis


Book Description

This 1997 volume provides an overview of statistical energy analysis and its applications in structural vibration. Statistical energy analysis is a powerful method for predicting and analysing the vibrational behaviour of structures. Its main use is for structures that can be considered as assemblies of interconnected subsystems which are subject to medium to high frequency vibration sources. This volume brings together nine articles by experts from around the world. The opening chapter gives an introduction and overview of the technique describing its key successes, potential and limitations. Following chapters look in more detail at a selection of cases and examples which together illustrate the scope and power of the technique. This book is based on a Royal Society Philosophical Transactions issue under the title 'Statistical Energy Analysis', but an extra chapter, by Chohan, Price, Keane and Beshara, discussing nonconservatively coupled systems is included in this edition.







Energy Methods and Finite Element Techniques


Book Description

Energy Methods and Finite Element Techniques: Stress and Vibration Applications provides readers with a complete understanding of the theory and practice of finite element analysis using energy methods to better understand, predict, and mitigate static stress and vibration in different structural and mechanical configurations. It presents readers with the underlying theory, techniques for implementation, and field-tested applications of these methods using linear ordinary differential equations. Statistical energy analysis and its various applications are covered, and applications discussed include plate problems, bars and beams, plane strain and stress, 3D elasticity problems, vibration problems, and more. Higher order plate and shell elements, steady state heat conduction, and shape function determinations and numerical integration are analyzed as well. Introduces the theory, practice, and applications of energy methods and the finite element method for predicting and mitigating structural stress and vibrations Outlines modified finite element techniques such as those with different classes of meshes and basic functions Discusses statistical energy analysis and its vibration and acoustic applications




Fundamentals of Noise and Vibration Analysis for Engineers


Book Description

Noise and Vibration affects all kinds of engineering structures, and is fast becoming an integral part of engineering courses at universities and colleges around the world. In this second edition, Michael Norton's classic text has been extensively updated to take into account recent developments in the field. Much of the new material has been provided by Denis Karczub, who joins Michael as second author for this edition. This book treats both noise and vibration in a single volume, with particular emphasis on wave-mode duality and interactions between sound waves and solid structures. There are numerous case studies, test cases, and examples for students to work through. The book is primarily intended as a textbook for senior level undergraduate and graduate courses, but is also a valuable reference for researchers and professionals looking to gain an overview of the field.







Statistical Methods for Data Analysis in Particle Physics


Book Description

This concise set of course-based notes provides the reader with the main concepts and tools needed to perform statistical analyses of experimental data, in particular in the field of high-energy physics (HEP). First, the book provides an introduction to probability theory and basic statistics, mainly intended as a refresher from readers’ advanced undergraduate studies, but also to help them clearly distinguish between the Frequentist and Bayesian approaches and interpretations in subsequent applications. More advanced concepts and applications are gradually introduced, culminating in the chapter on both discoveries and upper limits, as many applications in HEP concern hypothesis testing, where the main goal is often to provide better and better limits so as to eventually be able to distinguish between competing hypotheses, or to rule out some of them altogether. Many worked-out examples will help newcomers to the field and graduate students alike understand the pitfalls involved in applying theoretical concepts to actual data. This new second edition significantly expands on the original material, with more background content (e.g. the Markov Chain Monte Carlo method, best linear unbiased estimator), applications (unfolding and regularization procedures, control regions and simultaneous fits, machine learning concepts) and examples (e.g. look-elsewhere effect calculation).




Data Analysis in High Energy Physics


Book Description

This practical guide covers the essential tasks in statistical data analysis encountered in high energy physics and provides comprehensive advice for typical questions and problems. The basic methods for inferring results from data are presented as well as tools for advanced tasks such as improving the signal-to-background ratio, correcting detector effects, determining systematics and many others. Concrete applications are discussed in analysis walkthroughs. Each chapter is supplemented by numerous examples and exercises and by a list of literature and relevant links. The book targets a broad readership at all career levels - from students to senior researchers. An accompanying website provides more algorithms as well as up-to-date information and links. * Free solutions manual available for lecturers at www.wiley-vch.de/supplements/