Theory and Computation of Complex Tensors and its Applications


Book Description

The book provides an introduction of very recent results about the tensors and mainly focuses on the authors' work and perspective. A systematic description about how to extend the numerical linear algebra to the numerical multi-linear algebra is also delivered in this book. The authors design the neural network model for the computation of the rank-one approximation of real tensors, a normalization algorithm to convert some nonnegative tensors to plane stochastic tensors and a probabilistic algorithm for locating a positive diagonal in a nonnegative tensors, adaptive randomized algorithms for computing the approximate tensor decompositions, and the QR type method for computing U-eigenpairs of complex tensors. This book could be used for the Graduate course, such as Introduction to Tensor. Researchers may also find it helpful as a reference in tensor research.




Theory and Computation of Tensors


Book Description

Theory and Computation of Tensors: Multi-Dimensional Arrays investigates theories and computations of tensors to broaden perspectives on matrices. Data in the Big Data Era is not only growing larger but also becoming much more complicated. Tensors (multi-dimensional arrays) arise naturally from many engineering or scientific disciplines because they can represent multi-relational data or nonlinear relationships. Provides an introduction of recent results about tensors Investigates theories and computations of tensors to broaden perspectives on matrices Discusses how to extend numerical linear algebra to numerical multi-linear algebra Offers examples of how researchers and students can engage in research and the applications of tensors and multi-dimensional arrays




Applied Linear Algebra, Probability and Statistics


Book Description

This book focuses on research in linear algebra, statistics, matrices, graphs and their applications. Many chapters in the book feature new findings due to applications of matrix and graph methods. The book also discusses rediscoveries of the subject by using new methods. Dedicated to Prof. Calyampudi Radhakrishna Rao (C.R. Rao) who has completed 100 years of legendary life and continues to inspire us all and Prof. Arbind K. Lal who has sadly departed us too early, it has contributions from collaborators, students, colleagues and admirers of Professors Rao and Lal. With many chapters on generalized inverses, matrix analysis, matrices and graphs, applied probability and statistics, and the history of ancient mathematics, this book offers a diverse array of mathematical results, techniques and applications. The book promises to be especially rewarding for readers with an interest in the focus areas of applied linear algebra, probability and statistics.




Applications Of Tensor Analysis In Continuum Mechanics


Book Description

'A strong point of this book is its coverage of tensor theory, which is herein deemed both more readable and more substantial than many other historic continuum mechanics books. The book is self-contained. It serves admirably as a reference resource on fundamental principles and equations of tensor mathematics applied to continuum mechanics. Exercises and problem sets are useful for teaching … The book is highly recommended as both a graduate textbook and a reference work for students and more senior researchers involved in theoretical and mathematical modelling of continuum mechanics of materials. Key concepts are well described in the text and are supplemented by informative exercises and problem sets with solutions, and comprehensive Appendices provide important equations for ease of reference.'Contemporary PhysicsA tensor field is a tensor-valued function of position in space. The use of tensor fields allows us to present physical laws in a clear, compact form. A byproduct is a set of simple and clear rules for the representation of vector differential operators such as gradient, divergence, and Laplacian in curvilinear coordinate systems. The tensorial nature of a quantity permits us to formulate transformation rules for its components under a change of basis. These rules are relatively simple and easily grasped by any engineering student familiar with matrix operators in linear algebra. More complex problems arise when one considers the tensor fields that describe continuum bodies. In this case general curvilinear coordinates become necessary. The principal basis of a curvilinear system is constructed as a set of vectors tangent to the coordinate lines. Another basis, called the dual basis, is also constructed in a special manner. The existence of these two bases is responsible for the mysterious covariant and contravariant terminology encountered in tensor discussions.This book provides a clear, concise, and self-contained treatment of tensors and tensor fields. It covers the foundations of linear elasticity, shell theory, and generalized continuum media, offers hints, answers, and full solutions for many of the problems and exercises, and Includes a handbook-style summary of important tensor formulas.The book can be useful for beginners who are interested in the basics of tensor calculus. It also can be used by experienced readers who seek a comprehensive review on applications of the tensor calculus in mechanics.




An Introduction to Tensors and Group Theory for Physicists


Book Description

The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics. Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations. New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students. Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Examples and exercises are provided in each chapter for good practice in applying the presented material and techniques. Prerequisites for this text include the standard lower-division mathematics and physics courses, though extensive references are provided for the motivated student who has not yet had these. Advanced undergraduate and beginning graduate students in physics and applied mathematics will find this textbook to be a clear, concise, and engaging introduction to tensors and groups. Reviews of the First Edition “[P]hysicist Nadir Jeevanjee has produced a masterly book that will help other physicists understand those subjects [tensors and groups] as mathematicians understand them... From the first pages, Jeevanjee shows amazing skill in finding fresh, compelling words to bring forward the insight that animates the modern mathematical view...[W]ith compelling force and clarity, he provides many carefully worked-out examples and well-chosen specific problems... Jeevanjee’s clear and forceful writing presents familiar cases with a freshness that will draw in and reassure even a fearful student. [This] is a masterpiece of exposition and explanation that would win credit for even a seasoned author.” —Physics Today "Jeevanjee’s [text] is a valuable piece of work on several counts, including its express pedagogical service rendered to fledgling physicists and the fact that it does indeed give pure mathematicians a way to come to terms with what physicists are saying with the same words we use, but with an ostensibly different meaning. The book is very easy to read, very user-friendly, full of examples...and exercises, and will do the job the author wants it to do with style.” —MAA Reviews




Tensors: Geometry and Applications


Book Description

Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.




Tensor Algebra and Tensor Analysis for Engineers


Book Description

There is a large gap between engineering courses in tensor algebra on one hand, and the treatment of linear transformations within classical linear algebra on the other. This book addresses primarily engineering students with some initial knowledge of matrix algebra. Thereby, mathematical formalism is applied as far as it is absolutely necessary. Numerous exercises provided in the book are accompanied by solutions enabling autonomous study. The last chapters deal with modern developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics and might therefore be of high interest for PhD-students and scientists working in this area.




Tensor Eigenvalues and Their Applications


Book Description

This book offers an introduction to applications prompted by tensor analysis, especially by the spectral tensor theory developed in recent years. It covers applications of tensor eigenvalues in multilinear systems, exponential data fitting, tensor complementarity problems, and tensor eigenvalue complementarity problems. It also addresses higher-order diffusion tensor imaging, third-order symmetric and traceless tensors in liquid crystals, piezoelectric tensors, strong ellipticity for elasticity tensors, and higher-order tensors in quantum physics. This book is a valuable reference resource for researchers and graduate students who are interested in applications of tensor eigenvalues.




Tensors for Data Processing


Book Description

Tensors for Data Processing: Theory, Methods and Applications presents both classical and state-of-the-art methods on tensor computation for data processing, covering computation theories, processing methods, computing and engineering applications, with an emphasis on techniques for data processing. This reference is ideal for students, researchers and industry developers who want to understand and use tensor-based data processing theories and methods. As a higher-order generalization of a matrix, tensor-based processing can avoid multi-linear data structure loss that occurs in classical matrix-based data processing methods. This move from matrix to tensors is beneficial for many diverse application areas, including signal processing, computer science, acoustics, neuroscience, communication, medical engineering, seismology, psychometric, chemometrics, biometric, quantum physics and quantum chemistry. Provides a complete reference on classical and state-of-the-art tensor-based methods for data processing Includes a wide range of applications from different disciplines Gives guidance for their application




Algebraic and Computational Aspects of Real Tensor Ranks


Book Description

This book provides comprehensive summaries of theoretical (algebraic) and computational aspects of tensor ranks, maximal ranks, and typical ranks, over the real number field. Although tensor ranks have been often argued in the complex number field, it should be emphasized that this book treats real tensor ranks, which have direct applications in statistics. The book provides several interesting ideas, including determinant polynomials, determinantal ideals, absolutely nonsingular tensors, absolutely full column rank tensors, and their connection to bilinear maps and Hurwitz-Radon numbers. In addition to reviews of methods to determine real tensor ranks in details, global theories such as the Jacobian method are also reviewed in details. The book includes as well an accessible and comprehensive introduction of mathematical backgrounds, with basics of positive polynomials and calculations by using the Groebner basis. Furthermore, this book provides insights into numerical methods of finding tensor ranks through simultaneous singular value decompositions.