Steel Structures


Book Description

Design of Steel Structures is designed to meet the requirements of undergraduate students of civil and structural engineering. This book will also prove useful for postgraduate students and serve as an invaluable reference for practicing engineers unfamiliar with the limit state design of steel structures. The book provides an extensive coverage of the design of steel structures in accordance with the latest code of practice for general construction in steel (IS 800: 2007). The book is based on the modern limit state approach to design and covers topics such as properties of steel, types of steel structures, important areas of structural steel technology, bolted connections, welded connections, design of trusses, design of plate girders, and design of beam columns. Each chapter features solved examples, review questions, and practice problems as well as ample illustrations to supplement the text.




Unified Design of Steel Structures


Book Description

Geschwindner's 2nd edition of Unified Design of Steel Structures provides an understanding that structural analysis and design are two integrated processes as well as the necessary skills and knowledge in investigating, designing, and detailing steel structures utilizing the latest design methods according to the AISC Code.The goal is to prepare readers to work in design offices as designers and in the field as inspectors. This new edition is compatible with the 2011 AISC code as well as marginal references to the AISC manual for design examples and illustrations, which was seen as a real advantage by the survey respondents. Furthermore, new sections have been added on: Direct Analysis, Torsional and flexural-torsional buckling of columns, Filled HSS columns, and Composite column interaction. More real-world examples are included in addition to new use of three-dimensional illustrations in the book and in the image gallery; an increased number of homework problems; and media approach Solutions Manual, Image Gallery.




Structural Steel Semirigid Connections


Book Description

Although the semirigidity concept was introduced many years ago, steel structures are usually designed by assuming that beam-to-column joints are either pinned or rigid. Theses assumptions allow a great simplification in structural analysis and design-but they neglect the true behavior of joints. The economic and structural benefits of semirigid joints are well known and much has been written about their use in braced frames. However, they are seldom used by designers, because most semirigid connections have highly nonlinear behavior, so that the analysis and design of frames using them is difficult. In fact, the design problem becomes more difficult as soon as the true rotational behavior of beam-to-column joints is accounted for-the design problem requires many attempts to achieve a safe and economical solution. Structural Steel Semirigid Connections provides a comprehensive source of information on the design of semirigid frames, up to the complete detailing of beam-to-column connections, and focuses on the prediction of the moment-rotation curve of connections. This is the first work that contains procedures for predicting the connection plastic rotation supply-necessary for performing the local ductility control in nonlinear static and dynamic analyses. Extensive numerical examples clarify the practical application of the theoretical background. This exhaustive reference and the awareness it provides of the influence of joint rotational behavior on the elastic and inelastic responses of structures will greatly benefit researchers, professionals, and specification writing bodies devoted to structural steel.




Steel Structures


Book Description

Presents the background needed for developing and explaining design requirements. This edition (the first was 1971) reflects the formal adoption by the American Institute of Steel Construction of a specification for Load and Resistance Factor Design. For beginning and more advanced undergraduate courses in steel structures. Annotation copyrighted by Book News, Inc., Portland, OR




Design of Steel Structures


Book Description

This book introduces the fundamental design concept of Eurocode 3 for current steel structures in building construction, and their practical application. Following a discussion of the basis of design, including the principles of reliability management and the limit state approach, the material standards and their use are detailed. The fundamentals of structural analysis and modeling are presented, followed by the design criteria and approaches for various types of structural members. The theoretical basis and checking procedures are closely tied to the Eurocode requirements. The following chapters expand on the principles and applications of elastic and plastic design, each exemplified by the step-by-step design calculation of a braced steel-framed building and an industrial building, respectively. Besides providing the necessary theoretical concepts for a good understanding, this manual intends to be a supporting tool for the use of practicing engineers. In order of this purpose, throughout the book, numerous worked examples are provided, concerning the analysis of steel structures and the design of elements under several types of actions. These examples will facilitate the acceptance of the code and provide for a smooth transition from earlier national codes to the Eurocode.




Structural Stability of Steel


Book Description

Practical guide to structural stability theory for the design of safe steel structures Not only does this book provide readers with a solid foundation in structural stability theory, it also offers them a practical, working knowledge of how this theory translates into design specifications for safe steel structures. Structural Stability of Steel features detailed discussions of the elastic and inelastic stability of steel columns, beams, beam-columns, and frames alongside numerous worked examples. For each type of structural member or system, the authors set forth recommended design rules with clear explanations of how they were derived. Following an introduction to the principles of stability theory, the book covers: * Stability of axially loaded planar elastic systems * Tangent-modulus, reduced-modulus, and maximum strength theories * Elastic and inelastic stability limits of planar beam-columns * Elastic and inelastic instability of planar frames * Out-of-plane, lateral-torsional buckling of beams, columns, and beam-columns The final two chapters focus on the application of stability theory to the practical design of steel structures, with special emphasis on examples based on the 2005 Specification for Structural Steel Buildings of the American Institute of Steel Construction. Problem sets at the end of each chapter enable readers to put their newfound knowledge into practice by solving actual instability problems. With its clear logical progression from theory to design implementation, this book is an ideal textbook for upper-level undergraduates and graduate students in structural engineering. Practicing engineers should also turn to this book for expert assistance in investigating and solving a myriad of stability problems.




Design of Steel Structures


Book Description

A straightforward overview of the fundamentals of steel structure design This hands-on structural engineering guide provides concise, easy-to-understand explanations of the design and behavior of steel columns, beams, members, and connections. Ideal for preparing you for the field, Design of Steel Structures includes real-world examples that demonstrate practical applications of AISC 360 specifications. You will get an introduction to more advanced topics, including connections, composite members, plate girders, and torsion. This textbook also includes access to companion online videos that help connect theory to practice. Coverage includes: Structural systems and elements Design considerations Tension members Design of columns AISC design requirements Design of beams Torsion Stress analysis and design considerations Beam-columns Connections Plate girders Intermediate transverse and bearing stiffeners




Design of Steel Structures


Book Description

This book on Design of Steel Structures uses Limit State Method and follows the latest BIS Codes, BIS: 800: 2007.A perfect mix of concise theory with relevant applications and inclusion of most recent design methodologies makes this an excellent offering to students and practicing engineers.




Steel Design 1: Structural Basics


Book Description

This textbook covers the design and analysis of steel structures for buildings according to EN 1990 (Eurocode 0), EN 1991 (Eurocode 1) and EN 1993 (Eurocode 3). Chapter 1 describes the theory and background of EN 1990 in terms of structural safety, reliability and the design values of resistances and actions. Chapter 2 deals with actions and deformations described in EN 1991. The permanent loads and vari¬able actions and in particular the imposed loads and the snow loads and wind actions are discussed. This chapter also contains three worked examples to determine the actions on a floor in a residential house, the actions on a free-standing platform canopy at a station and the wind actions on the façades of an office building. Chapter 3 is about modelling, discussing the schematisation of the structural system, the joints and the material properties as well as the cross-section properties. Chapter 4 deals with the classification of frames and the various analysis methods for unbraced and braced frames. Chapter 5 then goes deeper into these analysis methods to determine the force distribution and defor¬mations. Chapter 6 deals with the assessment by code-checking of (parts of) the steel structure with EN 1993-1-1 and EN 1993-1-8. At a basic level, the assessment of the resistance of cross-sections, the stability of members under axial forces and the resistance of bolted and welded connections are explained. Chapter 7 discusses in an extensive way the assessment by code-checking of the resistance of cross-sections, both for single and combined internal forces. The principles of the assessment of the resistance of cross-sections according to elastic and plastic theory are also discussed.