Theory of Convex Structures


Book Description

Presented in this monograph is the current state-of-the-art in the theory of convex structures. The notion of convexity covered here is considerably broader than the classic one; specifically, it is not restricted to the context of vector spaces. Classical concepts of order-convex sets (Birkhoff) and of geodesically convex sets (Menger) are directly inspired by intuition; they go back to the first half of this century. An axiomatic approach started to develop in the early Fifties. The author became attracted to it in the mid-Seventies, resulting in the present volume, in which graphs appear side-by-side with Banach spaces, classical geometry with matroids, and ordered sets with metric spaces. A wide variety of results has been included (ranging for instance from the area of partition calculus to that of continuous selection). The tools involved are borrowed from areas ranging from discrete mathematics to infinite-dimensional topology.Although addressed primarily to the researcher, parts of this monograph can be used as a basis for a well-balanced, one-semester graduate course.




Convex Structures and Economic Theory


Book Description

Mathematics in Science and Engineering, Volume 51: Convex Structures and Economic Theory consists of an account of the theory of convex sets and its application to several basic problems that originate in economic theory and adjacent subject matter. This volume includes examples of problems pertaining to interesting static and dynamic phenomena in linear and nonlinear economic systems, as well as models initiated by Leontief, von Neumann, and Walras. The topics covered are the mathematical theorems on convexity, simple multisector linear systems, balanced growth in nonlinear systems, and efficient allocation and growth. The working of Walrasian competitive economies, special features of competitive economies, and Jacobian matrix and global univalence are also covered. This publication is suitable for advanced students of mathematical economics and related fields, but is also beneficial for anyone who wishes to become familiar with the basic ideas, methods, and results in the mathematical treatment in economic theory through a detailed exposition of a number of typical representative problems.




Barrelled Locally Convex Spaces


Book Description

This book is a systematic treatment of barrelled spaces, and of structures in which barrelledness conditions are significant. It is a fairly self-contained study of the structural theory of those spaces, concentrating on the basic phenomena in the theory, and presenting a variety of functional-analytic techniques.Beginning with some basic and important results in different branches of Analysis, the volume deals with Baire spaces, presents a variety of techniques, and gives the necessary definitions, exploring conditions on discs to ensure that they are absorbed by the barrels of the space. The abstract theory of barrelled spaces is then presented, as well as local completeness and its applications to the inheritance of the Mackey topology to subspaces. Further discussed is the abstract study of bornological and ultrabornological spaces; B- and Br-completeness; inductive limits; strong barrelledness conditions; characterizations of barrelled, bornological and (DF)-spaces in the context of spaces of type C(X); the stability of barrelledness conditions of topological tensor products and the related questions of commutability of inductive limits and tensor products; and the holomorphically significant properties of locally convex spaces as developed by Nachbin and others.




Discrete Convex Analysis


Book Description

Discrete Convex Analysis is a novel paradigm for discrete optimization that combines the ideas in continuous optimization (convex analysis) and combinatorial optimization (matroid/submodular function theory) to establish a unified theoretical framework for nonlinear discrete optimization. The study of this theory is expanding with the development of efficient algorithms and applications to a number of diverse disciplines like matrix theory, operations research, and economics. This self-contained book is designed to provide a novel insight into optimization on discrete structures and should reveal unexpected links among different disciplines. It is the first and only English-language monograph on the theory and applications of discrete convex analysis.




Fixed Points and Economic Equilibria


Book Description

1. Introduction. 1.1. Mathematics is language. 1.2. Notes on some mathematical tools in this book. 1.3. Basic mathematical concepts and definitions -- 2. Fixed-point theorems. 2.1. Classical results and basic extensions. 2.2. Convexity and duality for general spaces. 2.3. Extension of classical results to general spaces -- 3. Nash equilibrium and abstract economy. 3.1. Multi-agent product settings for games. 3.2. Nash equilibrium. 3.3. Abstract economy -- 4. Gale-Nikaido-Debreu's theorem. 4.1. Gale-Nikaido-Debreu's theorem. 4.2. Market equilibria in general vector spaces. 4.3. Demand-supply coincidence in general spaces -- 5. General economic equilibrium. 5.1. General preferences and basic existence theorems. 5.2. Pareto optimal allocations. 5.3. Existence of general equilibrium -- 6. The C̮ech type homology theory and fixed points. 6.1. Basic concepts in algebraic topology. 6.2. Vietoris-Begle mapping and local connectedness. 6.3. Nikaido's analogue of Sperner's lemma. 6.4. Eilenberg-Montgomery's theorem -- 7. Convex structure and fixed-point index. 7.1. Lefschetz's fixed-point theorem and its extensions. 7.2. Cohomology theory for general spaces. 7.3. Dual-system structure and differentiability. 7.4. Linear Approximation for Isolated Fixed Points. 7.5. Indices for compact set of fixed points -- 8. Applications to related topics. 8.1. KKM, KKMS, and core existence. 8.2. Eaves' theorem. 8.3. Fan-Browder's coincidence theorem. 8.4. L-majorized mappings. 8.5. Variational inequality problem. 8.6. Equilibrium with cooperative concepts. 8.7. System of inequalities and affine transformations -- 9. Mathematics and social science. 9.1. Basic concepts in axiomatic set theory. 9.2. Individuals and rationality. 9.3. Society and values -- 10. Concluding discussions. 10.1. Fixed points and economic equilibria. 10.2. Rationality and fixed-point views of the world




Semidefinite Optimization and Convex Algebraic Geometry


Book Description

An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.




Optimality Conditions in Convex Optimization


Book Description

Optimality Conditions in Convex Optimization explores an important and central issue in the field of convex optimization: optimality conditions. It brings together the most important and recent results in this area that have been scattered in the literature—notably in the area of convex analysis—essential in developing many of the important results in this book, and not usually found in conventional texts. Unlike other books on convex optimization, which usually discuss algorithms along with some basic theory, the sole focus of this book is on fundamental and advanced convex optimization theory. Although many results presented in the book can also be proved in infinite dimensions, the authors focus on finite dimensions to allow for much deeper results and a better understanding of the structures involved in a convex optimization problem. They address semi-infinite optimization problems; approximate solution concepts of convex optimization problems; and some classes of non-convex problems which can be studied using the tools of convex analysis. They include examples wherever needed, provide details of major results, and discuss proofs of the main results.




Convexity and Optimization in Finite Dimensions I


Book Description

Dantzig's development of linear programming into one of the most applicable optimization techniques has spread interest in the algebra of linear inequalities, the geometry of polyhedra, the topology of convex sets, and the analysis of convex functions. It is the goal of this volume to provide a synopsis of these topics, and thereby the theoretical back ground for the arithmetic of convex optimization to be treated in a sub sequent volume. The exposition of each chapter is essentially independent, and attempts to reflect a specific style of mathematical reasoning. The emphasis lies on linear and convex duality theory, as initiated by Gale, Kuhn and Tucker, Fenchel, and v. Neumann, because it represents the theoretical development whose impact on modern optimi zation techniques has been the most pronounced. Chapters 5 and 6 are devoted to two characteristic aspects of duality theory: conjugate functions or polarity on the one hand, and saddle points on the other. The Farkas lemma on linear inequalities and its generalizations, Motzkin's description of polyhedra, Minkowski's supporting plane theorem are indispensable elementary tools which are contained in chapters 1, 2 and 3, respectively. The treatment of extremal properties of polyhedra as well as of general convex sets is based on the far reaching work of Klee. Chapter 2 terminates with a description of Gale diagrams, a recently developed successful technique for exploring polyhedral structures.




Geometric Measure Theory


Book Description

Geometric Measure Theory: A Beginner's Guide provides information pertinent to the development of geometric measure theory. This book presents a few fundamental arguments and a superficial discussion of the regularity theory. Organized into 12 chapters, this book begins with an overview of the purpose and fundamental concepts of geometric measure theory. This text then provides the measure-theoretic foundation, including the definition of Hausdorff measure and covering theory. Other chapters consider the m-dimensional surfaces of geometric measure theory called rectifiable sets and introduce the two basic tools of the regularity theory of area-minimizing surfaces. This book discusses as well the fundamental theorem of geometric measure theory, which guarantees solutions to a wide class of variational problems in general dimensions. The final chapter deals with the basic methods of geometry and analysis in a generality that embraces manifold applications. This book is a valuable resource for graduate students, mathematicians, and research workers.




Approximation and Optimization of Discrete and Differential Inclusions


Book Description

Optimal control theory has numerous applications in both science and engineering. This book presents basic concepts and principles of mathematical programming in terms of set-valued analysis and develops a comprehensive optimality theory of problems described by ordinary and partial differential inclusions. In addition to including well-recognized results of variational analysis and optimization, the book includes a number of new and important ones Includes practical examples