A Treatise on Trigonometric Series


Book Description

A Treatise on Trigonometric Series, Volume 1 deals comprehensively with the classical theory of Fourier series. This book presents the investigation of best approximations of functions by trigonometric polynomials. Organized into six chapters, this volume begins with an overview of the fundamental concepts and theorems in the theory of trigonometric series, which play a significant role in mathematics and in many of its applications. This text then explores the properties of the Fourier coefficient function and estimates the rate at which its Fourier coefficients tend to zero. Other chapters consider some tests for the convergence of a Fourier series at a given point. This book discusses as well the conditions under which the series does converge uniformly. The final chapter deals with adjustment of a summable function outside a given perfect set. This book is a valuable resource for advanced students and research workers. Mathematicians will also find this book useful.




A Handbook of Real Variables


Book Description

This concise, well-written handbook provides a distillation of real variable theory with a particular focus on the subject's significant applications to differential equations and Fourier analysis. Ample examples and brief explanations---with very few proofs and little axiomatic machinery---are used to highlight all the major results of real analysis, from the basics of sequences and series to the more advanced concepts of Taylor and Fourier series, Baire Category, and the Weierstrass Approximation Theorem. Replete with realistic, meaningful applications to differential equations, boundary value problems, and Fourier analysis, this unique work is a practical, hands-on manual of real analysis that is ideal for physicists, engineers, economists, and others who wish to use the fruits of real analysis but who do not necessarily have the time to appreciate all of the theory. Valuable as a comprehensive reference, a study guide for students, or a quick review, "A Handbook of Real Variables" will benefit a wide audience.




A Treatise on Advanced Calculus


Book Description

This classic offers a comprehensive logical treatment that concentrates on theory rather than on techniques and applications, providing students with a substantial base for graduate work in physics. 1940 edition.




The H-Function


Book Description

TheH-function or popularly known in the literature as Fox’sH-function has recently found applications in a large variety of problems connected with reaction, diffusion, reaction–diffusion, engineering and communication, fractional differ- tial and integral equations, many areas of theoretical physics, statistical distribution theory, etc. One of the standard books and most cited book on the topic is the 1978 book of Mathai and Saxena. Since then, the subject has grown a lot, mainly in the elds of applications. Due to popular demand, the authors were requested to - grade and bring out a revised edition of the 1978 book. It was decided to bring out a new book, mostly dealing with recent applications in statistical distributions, pa- way models, nonextensive statistical mechanics, astrophysics problems, fractional calculus, etc. and to make use of the expertise of Hans J. Haubold in astrophysics area also. It was decided to con ne the discussion toH-function of one scalar variable only. Matrix variable cases and many variable cases are not discussed in detail, but an insight into these areas is given. When going from one variable to many variables, there is nothing called a unique bivariate or multivariate analogue of a givenfunction. Whatever be the criteria used, there may be manydifferentfunctions quali ed to be bivariate or multivariate analogues of a given univariate function. Some of the bivariate and multivariateH-functions, currently in the literature, are also questioned by many authors.







Infinite Series in a History of Analysis


Book Description

"Higher mathematics" once pointed towards the involvement of infinity. This we label analysis. The ancient Greeks had helped it to a first high point when they mastered the infinite. The book traces the history of analysis along the risky route of serial procedures through antiquity. It took quite long for this type of mathematics to revive in our region. When and where it did, infinite series proved the driving force. Not until a good two millennia had gone by, would analysis head towards Greek rigor again. To follow all that trial, error and final accomplishment, is more than studying history: It provides touching, worthwhile access to advanced calculus. Moreover, some steps beyond convergence show infinite series to naturally fit a wider frame.




A Guide to Distribution Theory and Fourier Transforms


Book Description

This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.