Theory of Ground Vehicles


Book Description

An updated edition of the classic reference on the dynamics of road and off-road vehicles As we enter a new millennium, the vehicle industry faces greater challenges than ever before as it strives to meet the increasing demand for safer, environmentally friendlier, more energy efficient, and lower emissions products. Theory of Ground Vehicles, Third Edition gives aspiring and practicing engineers a fundamental understanding of the critical factors affecting the performance, handling, and ride essential to the development and design of ground vehicles that meet these requirements. As in previous editions, this book focuses on applying engineering principles to the analysis of vehicle behavior. A large number of practical examples and problems are included throughout to help readers bridge the gap between theory and practice. Covering a wide range of topics concerning the dynamics of road and off-road vehicles, this Third Edition is filled with up-to-date information, including: * The Magic Formula for characterizing pneumatic tire behavior from test data for vehicle handling simulations * Computer-aided methods for performance and design evaluation of off-road vehicles, based on the author's own research * Updated data on road vehicle transmissions and operating fuel economy * Fundamentals of road vehicle stability control * Optimization of the performance of four-wheel-drive off-road vehicles and experimental substantiation, based on the author's own investigations * A new theory on skid-steering of tracked vehicles, developed by the author.




Theory and Applications of Aerodynamics for Ground Vehicles


Book Description

This book provides an introduction to ground vehicle aerodynamics and methodically guides the reader through the various aspects of the subject. Those needing specific information or a refresher can easily jump to the material of interest. There is a particular emphasis on various vehicle types (passenger cars, trucks, trains, motorcycles, race cars, etc.). However, the book is focused on cars and trucks, which are the most common vehicles in the speed range in which the study of ground vehicle aerodynamics is beneficial. Readers will gain a fundamental understanding of the topic, which will help them design vehicles that have improved aerodynamics; this will lead to better fuel efficiency, improved performance, and increased passenger comfort. The author’s basic approach to the presentation of the material is complemented with review questions, application questions, exercises, and suggested projects at the end of most of the chapters, which helps the reader apply the information presented, either in the classroom or for self-study. Aside from offering a solid understanding of ground vehicle aerodynamics, the book also offers more thorough study of several key topics. One such topic is car-truck interaction, when one vehicle (usually the smaller one) is overtaking the other. There is a direct and instant benefit in terms of safety on the highway from understanding the forces at play when one vehicle passes the other in the same direction and sense. Chapters examine: • Drag • Noise and vehicle soiling • Wind tunnels and road/track testing • Numerical methods • Vehicle stability and control • Vehicle sectional design • Large vehicles: trucks, trailers, buses, trains • Severe service and off-road vehicles • Race cars and convertibles • Motorcycles • Concept vehicles




Driveline Systems of Ground Vehicles


Book Description

"With this book, Prof. Dr. Vantsevich brings a tremendous contribution to the field of Automotive Transmission and Driveline Engineering, including his innovative methods for optimum driveline synthesis, as well as his experience with the development of various hardware solutions, from the basic limited slip differentials to the most sophisticated




Ground Vehicle Dynamics


Book Description

Ground Vehicle Dynamics is devoted to the mathematical modelling and dynamical analysis of ground vehicle systems composed of the vehicle body, the guidance and suspension devices and the corresponding guideway. Automobiles on uneven roads and railways on flexible tracks are prominent representatives of ground vehicle systems. All these different kinds of systems are treated in a common way by means of analytical dynamics and control theory. In addition to a detailed modelling of vehicles as multibody systems, the contact theory for rolling wheels and the modelling of guideways by finite element systems as well as stochastic processes are presented. As a particular result of this integrated approach the state equations of the global systems are obtained including the complete interactions between the subsystems considered as independent modules. The fundamentals of vehicle dynamics for longitudinal, lateral and vertical motions and vibrations of automobiles and railways are discussed in detail.




Terramechanics and Off-road Vehicles


Book Description

Hardbound. The computer-aided methods presented in this book represent recent advances in the methodology for predicting and evaluating off-road vehicle performance. The mathematical models established for vehicle-terrain systems will enable the engineering practitioner to evaluate, on a rational basis, a wide range of options and to select an appropriate vehicle configuration for a given mission and environment. The models take into account all major design and operational parameters, as well as pertinent terrain characteristics.Applications of the computer-aided engineering methods to the parametric analysis of off-road vehicle design are demonstrated through examples.




Vehicle Dynamics


Book Description

This textbook is appropriate for senior undergraduate and first year graduate students in mechanical and automotive engineering. The contents in this book are presented at a theoretical-practical level. It explains vehicle dynamics concepts in detail, concentrating on their practical use. Related theorems and formal proofs are provided, as are real-life applications. Students, researchers and practicing engineers alike will appreciate the user-friendly presentation of a wealth of topics, most notably steering, handling, ride, and related components. This book also: Illustrates all key concepts with examples Includes exercises for each chapter Covers front, rear, and four wheel steering systems, as well as the advantages and disadvantages of different steering schemes Includes an emphasis on design throughout the text, which provides a practical, hands-on approach




Control Applications of Vehicle Dynamics


Book Description

This book presents essential knowledge of car vehicle dynamics and control theory with NI LabVIEW software product application, resulting in a practical yet highly technical guide for designing advanced vehicle dynamics and vehicle system controllers. Presenting a clear overview of fundamental vehicle dynamics and vehicle system mathematical models, the book covers linear and non-linear design of model based controls such as wheel slip control, vehicle speed control, path following control, vehicle stability and rollover control, stabilization of vehicle-trailer system. Specific applications to autonomous vehicles are described among the methods. It details the practical applications of Kalman-Bucy filtering and the observer design for sensor signal estimation, alongside lateral vehicle dynamics and vehicle rollover dynamics. The book also discusses high level controllers, alongside a clear explanation of basic control principles for regenerative braking in both electric and hybrid vehicles, and wheel torque vectoring systems. Concrete LabVIEW simulation examples of how the models and controls are used in representative applications, along with software algorithms and LabVIEW block diagrams are illustrated. It will be of interest to engineering students, automotive engineering students and automotive engineers and researchers.




Aerodynamics of Road Vehicles


Book Description

The detailed presentation of fundamental aerodynamics principles that influence and improve vehicle design have made Aerodynamics of Road Vehicles the engineer’s “source” for information. This fifth edition features updated and expanded information beyond that which was presented in previous releases. Completely new content covers lateral stability, safety and comfort, wind noise, high performance vehicles, helmets, engine cooling, and computational fluid dynamics. A proven, successful engineering design approach is presented that includes: • Fundamentals of fluid mechanics related to vehicle aerodynamics • Essential experimental results that are the ground rules of fluid mechanics • Design strategies for individual experimental results • General design solutions from combined experimental results The aerodynamics of passenger cars, commercial vehicles, motorcycles, sports cars, and race cars is dealt with in detail, inclusive of systems, testing techniques, measuring and numerical aerodynamics methods and simulations that significantly contribute to vehicle development. Aerodynamics of Road Vehicles is an excellent reference tool and an indispensable source for the industry’s vehicle engineers, designers, and researchers, as well as for enthusiasts, students, and those working in academia or government regulatory agencies.




Theory of Ground Vehicles


Book Description

Technology/Engineering/Automotive Engineering for advancing ground vehicle mobility A standard text and reference for both the educational and professional communities, Theory of Ground Vehicles gives aspiring and practicing engineers a fundamental understanding of the critical factors affecting the performance, handling, and ride essential to the development and design of ground vehicles. In view of the growing concerns over environmental impact, energy efficiency, and safety, this new Fourth Edition has been revised and expanded to address these issues and other developments in the field. Retaining the contents and format of previous editions, the Fourth Edition introduces new material to reflect recent advances in ground transportation technology, including: * Computer-aided methods for design and performance evaluation of off-road vehicles and their practical applications * Emissions and fuel economy * Hybrid electric drives and fuel cells and their operating principles * Selection of vehicle configurations for off-road operations * Road vehicle stability control * ISO 2631-1:1997 and its applications to evaluating vehicle ride characteristics As in previous editions, this book focuses on applying engineering principles to the analysis of vehicle behavior. A large number of practical examples and problems are included throughout to help readers bridge the gap between theory and practice. With its broad coverage and pedagogical aids, Theory of Ground Vehicles, Fourth Edition remains the text of choice for students, engineers, and researchers wishing to master and apply basic theory to solve real-world, road and off-road vehicle mobility problems.




Theory, Design, and Applications of Unmanned Aerial Vehicles


Book Description

This book provides a complete overview of the theory, design, and applications of unmanned aerial vehicles. It covers the basics, including definitions, attributes, manned vs. unmanned, design considerations, life cycle costs, architecture, components, air vehicle, payload, communications, data link, and ground control stations. Chapters cover types and civilian roles, sensors and characteristics, alternative power, communications and data links, conceptual design, human machine interface, sense and avoid systems, civil airspace issues and integration efforts, navigation, autonomous control, swarming, and future capabilities.