Theory of Groups and Symmetries: Representations of Groups and Lie Algebras, Applications


Book Description

This book is a sequel to the book by the same authors entitled Theory of Groups and Symmetries: Finite Groups, Lie Groups, and Lie Algebras. The presentation begins with the Dirac notation, which is illustrated by boson and fermion oscillator algebras and also Grassmann algebra. Then detailed account of finite-dimensional representations of groups SL(2, C) and SU(2) and their Lie algebras is presented. The general theory of finite-dimensional irreducible representations of simple Lie algebras based on the construction of highest weight representations is given. The classification of all finite-dimensional irreducible representations of the Lie algebras of the classical series sℓ(n, C), so(n, C) and sp(2r, C) is exposed. Finite-dimensional irreducible representations of linear groups SL(N, C) and their compact forms SU(N) are constructed on the basis of the Schur-Weyl duality. A special role here is played by the theory of representations of the symmetric group algebra C[Sr] (Schur-Frobenius theory, Okounkov-Vershik approach), based on combinatorics of Young diagrams and Young tableaux. Similar construction is given for pseudo-orthogonal groups O(p, q) and SO(p, q), including Lorentz groups O(1, N-1) and SO(1, N-1), and their Lie algebras, as well as symplectic groups Sp(p, q). The representation theory of Brauer algebra (centralizer algebra of SO(p, q) and Sp(p, q) groups in tensor representations) is discussed. Finally, the covering groups Spin(p, q) for pseudo-orthogonal groups SO↑(p, q) are studied. For this purpose, Clifford algebras in spaces Rp, q are introduced and representations of these algebras are discussed.




Theory Of Groups And Symmetries: Finite Groups, Lie Groups, And Lie Algebras


Book Description

The book presents the main approaches in study of algebraic structures of symmetries in models of theoretical and mathematical physics, namely groups and Lie algebras and their deformations. It covers the commonly encountered quantum groups (including Yangians). The second main goal of the book is to present a differential geometry of coset spaces that is actively used in investigations of models of quantum field theory, gravity and statistical physics. The third goal is to explain the main ideas about the theory of conformal symmetries, which is the basis of the AdS/CFT correspondence.The theory of groups and symmetries is an important part of theoretical physics. In elementary particle physics, cosmology and related fields, the key role is played by Lie groups and algebras corresponding to continuous symmetries. For example, relativistic physics is based on the Lorentz and Poincare groups, and the modern theory of elementary particles — the Standard Model — is based on gauge (local) symmetry with the gauge group SU(3) x SU(2) x U(1). This book presents constructions and results of a general nature, along with numerous concrete examples that have direct applications in modern theoretical and mathematical physics.







Lie Algebras, Cohomology, and New Applications to Quantum Mechanics


Book Description

This volume, which contains a good balance of research and survey papers, presents at look at some of the current development in this extraordinarily rich and vibrant area.




Symmetry


Book Description

Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.




Group Theory In Physics: A Practitioner's Guide


Book Description

'The book contains a lot of examples, a lot of non-standard material which is not included in many other books. At the same time the authors manage to avoid numerous cumbersome calculations … It is a great achievement that the authors found a balance.'zbMATHThis book presents the study of symmetry groups in Physics from a practical perspective, i.e. emphasising the explicit methods and algorithms useful for the practitioner and profusely illustrating by examples.The first half reviews the algebraic, geometrical and topological notions underlying the theory of Lie groups, with a review of the representation theory of finite groups. The topic of Lie algebras is revisited from the perspective of realizations, useful for explicit computations within these groups. The second half is devoted to applications in physics, divided into three main parts — the first deals with space-time symmetries, the Wigner method for representations and applications to relativistic wave equations. The study of kinematical algebras and groups illustrates the properties and capabilities of the notions of contractions, central extensions and projective representations. Gauge symmetries and symmetries in Particle Physics are studied in the context of the Standard Model, finishing with a discussion on Grand-Unified Theories.




Groups and Symmetries


Book Description

Groups and Symmetries: From Finite Groups to Lie Groups presents an introduction to the theory of group representations and its applications in quantum mechanics. Accessible to advanced undergraduates in mathematics and physics as well as beginning graduate students, the text deals with the theory of representations of finite groups, compact groups, linear Lie groups and their Lie algebras, concisely and in one volume. Prerequisites include calculus and linear algebra. This new edition contains an additional chapter that deals with Clifford algebras, spin groups, and the theory of spinors, as well as new sections entitled "Topics in history" comprising notes on the history of the material treated within each chapter. (Taken together, they constitute an account of the development of the theory of groups from its inception in the 18th century to the mid-20th.) References for additional resources and further study are provided in each chapter. All chapters end with exercises of varying degree of difficulty, some of which introduce new definitions and results. The text concludes with a collection of problems with complete solutions making it ideal for both course work and independent study. Key Topics include: Brisk review of the basic definitions of group theory, with examples Representation theory of finite groups: character theory Representations of compact groups using the Haar measure Lie algebras and linear Lie groups Detailed study of SO(3) and SU(2), and their representations Spherical harmonics Representations of SU(3), roots and weights, with quark theory as a consequence of the mathematical properties of this symmetry group Spin groups and spinors.




Group And Representation Theory


Book Description

This volume goes beyond the understanding of symmetries and exploits them in the study of the behavior of both classical and quantum physical systems. Thus it is important to study the symmetries described by continuous (Lie) groups of transformations. We then discuss how we get operators that form a Lie algebra. Of particular interest to physics is the representation of the elements of the algebra and the group in terms of matrices and, in particular, the irreducible representations. These representations can be identified with physical observables.This leads to the study of the classical Lie algebras, associated with unitary, unimodular, orthogonal and symplectic transformations. We also discuss some special algebras in some detail. The discussion proceeds along the lines of the Cartan-Weyl theory via the root vectors and root diagrams and, in particular, the Dynkin representation of the roots. Thus the representations are expressed in terms of weights, which are generated by the application of the elements of the algebra on uniquely specified highest weight states. Alternatively these representations can be described in terms of tensors labeled by the Young tableaux associated with the discrete symmetry Sn. The connection between the Young tableaux and the Dynkin weights is also discussed. It is also shown that in many physical systems the quantum numbers needed to specify the physical states involve not only the highest symmetry but also a number of sub-symmetries contained in them. This leads to the study of the role of subalgebras and in particular the possible maximal subalgebras. In many applications the physical system can be considered as composed of subsystems obeying a given symmetry. In such cases the reduction of the Kronecker product of irreducible representations of classical and special algebras becomes relevant and is discussed in some detail. The method of obtaining the relevant Clebsch-Gordan (C-G) coefficients for such algebras is discussed and some relevant algorithms are provided. In some simple cases suitable numerical tables of C-G are also included.The above exposition contains many examples, both as illustrations of the main ideas as well as well motivated applications. To this end two appendices of 51 pages — 11 tables in Appendix A, summarizing the material discussed in the main text and 39 tables in Appendix B containing results of more sophisticated examples are supplied. Reference to the tables is given in the main text and a guide to the appropriate section of the main text is given in the tables.




Theory Of Groups And Symmetries: Representations Of Groups And Lie Algebras, Applications


Book Description

This book is a sequel to the book by the same authors entitled Theory of Groups and Symmetries: Finite Groups, Lie Groups, and Lie Algebras.The presentation begins with the Dirac notation, which is illustrated by boson and fermion oscillator algebras and also Grassmann algebra. Then detailed account of finite-dimensional representations of groups SL(2, C) and SU(2) and their Lie algebras is presented. The general theory of finite-dimensional irreducible representations of simple Lie algebras based on the construction of highest weight representations is given. The classification of all finite-dimensional irreducible representations of the Lie algebras of the classical series sℓ(n, C), so(n, C) and sp(2r, C) is exposed.Finite-dimensional irreducible representations of linear groups SL(N, C) and their compact forms SU(N) are constructed on the basis of the Schur-Weyl duality. A special role here is played by the theory of representations of the symmetric group algebra C[Sr] (Schur-Frobenius theory, Okounkov-Vershik approach), based on combinatorics of Young diagrams and Young tableaux. Similar construction is given for pseudo-orthogonal groups O(p, q) and SO(p, q), including Lorentz groups O(1, N-1) and SO(1, N-1), and their Lie algebras, as well as symplectic groups Sp(p, q). The representation theory of Brauer algebra (centralizer algebra of SO(p, q) and Sp(p, q) groups in tensor representations) is discussed.Finally, the covering groups Spin(p, q) for pseudo-orthogonal groups SO↑(p, q) are studied. For this purpose, Clifford algebras in spaces Rp, q are introduced and representations of these algebras are discussed.




Lie Algebras and Applications


Book Description

This book, designed for advanced graduate students and post-graduate researchers, introduces Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. The book contains many examples that help to elucidate the abstract algebraic definitions. It provides a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators and the dimensions of the representations of all classical Lie algebras.