Theory of Impulsive Differential Equations


Book Description

Many evolution processes are characterized by the fact that at certain moments of time they experience a change of state abruptly. These processes are subject to short-term perturbations whose duration is negligible in comparison with the duration of the process. Consequently, it is natural to assume that these perturbations act instantaneously, that is, in the form of impulses. It is known, for example, that many biological phenomena involving thresholds, bursting rhythm models in medicine and biology, optimal control models in economics, pharmacokinetics and frequency modulated systems, do exhibit impulsive effects. Thus impulsive differential equations, that is, differential equations involving impulse effects, appear as a natural description of observed evolution phenomena of several real world problems.




Existence Theory for Nonlinear Ordinary Differential Equations


Book Description

We begin our applications of fixed point methods with existence of solutions to certain first order initial initial value problems. This problem is relatively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y'. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de fined either locally or globally on I, according to the assumptions imposed on I. Notice that (1. 1) is a system of first order equations because I takes its values in Rn. In section 3. 2 we will first establish some basic existence theorems which guarantee that a solution to (1. 1) exists for t > 0 and near zero. Familiar examples show that the interval of existence can be arbi trarily short, depending on the initial value r and the nonlinear behaviour of I. As a result we will also examine in section 3. 2 the dependence of the interval of existence on I and r. We mention in passing that, in the results which follow, the interval I can be replaced by any bounded interval and the initial value can be specified at any point in I. The reasoning needed to cover this slightly more general situation requires minor modifications on the arguments given here.




Impulsive Differential Equations


Book Description

Contents:General Description of Impulsive Differential SystemsLinear SystemsStability of SolutionsPeriodic and Almost Periodic Impulsive SystemsIntegral Sets of Impulsive SystemsOptimum Control in Impulsive SystemsAsymptotic Study of Oscillations in Impulsive SystemsA Periodic and Almost Periodic Impulsive SystemsBibliographySubject Index Readership: Researchers in nonlinear science. keywords:Differential Equations with Impulses;Linear Systems;Stability;Periodic and Quasi-Periodic Solutions;Integral Sets;Optimal Control “… lucid … the book … will benefit all who are interested in IDE…” Mathematics Abstracts




Impulsive Differential Equations


Book Description

For researchers in nonlinear science, this work includes coverage of linear systems, stability of solutions, periodic and almost periodic impulsive systems, integral sets of impulsive systems, optimal control in impulsive systems, and more.




Almost Periodic Solutions of Impulsive Differential Equations


Book Description

In the present book a systematic exposition of the results related to almost periodic solutions of impulsive differential equations is given and the potential for their application is illustrated.




Non-Instantaneous Impulses in Differential Equations


Book Description

This monograph is the first published book devoted to the theory of differential equations with non-instantaneous impulses. It aims to equip the reader with mathematical models and theory behind real life processes in physics, biology, population dynamics, ecology and pharmacokinetics. The authors examine a wide scope of differential equations with non-instantaneous impulses through three comprehensive chapters, providing an all-rounded and unique presentation on the topic, including: - Ordinary differential equations with non-instantaneous impulses (scalar and n-dimensional case)- Fractional differential equations with non-instantaneous impulses (with Caputo fractional derivatives of order q ε (0, 1))- Ordinary differential equations with non-instantaneous impulses occurring at random moments (with exponential, Erlang, or Gamma distribution) Each chapter focuses on theory, proofs and examples, and contains numerous graphs to enrich the reader’s understanding. Additionally, a carefully selected bibliography is included. Graduate students at various levels as well as researchers in differential equations and related fields will find this a valuable resource of both introductory and advanced material.




Impulsive Differential Equations


Book Description

Impulsive differential equations have been the subject of intense investigation in the last 10-20 years, due to the wide possibilities for their application in numerous fields of science and technology. This new work presents a systematic exposition of the results solving all of the more important problems in this field.




Impulsive Differential Equations


Book Description

The question of the presence of various asymptotic properties of the solutions of ordinary differential equations arises when solving various practical problems. The investigation of these questions is still more important for impulsive differential equations which have a wider field of application than the ordinary ones.The results obtained by treating the asymptotic properties of the solutions of impulsive differential equations can be found in numerous separate articles. The systematized exposition of these results in a separate book will satisfy the growing interest in the problems related to the asymptotic properties of the solutions of impulsive differential equations and their applications.




Differential Equations with Impulse Effects


Book Description

Significant interest in the investigation of systems with discontinuous trajectories is explained by the development of equipment in which significant role is played by impulsive control systems and impulsive computing systems. Impulsive systems are also encountered in numerous problems of natural sciences described by mathematical models with conditions reflecting the impulsive action of external forces with pulses whose duration can be neglected. Differential equations with set-valued right-hand side arise in the investigation of evolution processes in the case of measurement errors, inaccuracy or incompleteness of information, action of bounded perturbations, violation of unique solvability conditions, etc. Differential inclusions also allow one to describe the dynamics of controlled processes and are widely used in the theory of optimal control. This monograph is devoted to the investigation of impulsive differential equations with set-valued and discontinuous right-hand sides. It is intended for researchers, lecturers, postgraduate students, and students of higher schools specialized in the field of the theory of differential equations, the theory of optimal control, and their applications.




Nonoscillation Theory of Functional Differential Equations with Applications


Book Description

This monograph explores nonoscillation and existence of positive solutions for functional differential equations and describes their applications to maximum principles, boundary value problems and stability of these equations. In view of this objective the volume considers a wide class of equations including, scalar equations and systems of different types, equations with variable types of delays and equations with variable deviations of the argument. Each chapter includes an introduction and preliminaries, thus making it complete. Appendices at the end of the book cover reference material. Nonoscillation Theory of Functional Differential Equations with Applications is addressed to a wide audience of researchers in mathematics and practitioners.​