Theory of Light Scattering in Condensed Matter


Book Description

The First Binational USA-USSR Seminar-Symposium on the Theory of Light Scattering in Condensed Matter was held in Moscow 26-30 May 1975. The initial conception for a light scattering seminar of about fifty scientists - half from each side, including theorists and experimenters "well versed in theory" - arose from discussions between Professor J. L. Birman and Professor K. K. Rebane at the 1971 Paris International Conference on Light Scattering in Solids. This conception won approval among the active scientists on both sides. After considerable planning and some delays, it received both material support and encouragement from the appro priate organizations on each side: in the USA: The National Science Foundation (Division of International Programs), and the National Academy of Sciences; in the USSR: the Academy of Sciences USSR. A variety of reasons contributed to the positive response on both sides: for example, the considerable and high level of theoretical and experimental scientific activity on both sides in laser-related light scattering, optics, and generally - electro dynamics of condensed media - some along rather similiar lines; the impediments to free and easy communication and travel be tween USA and USSR scientists working on related problems; plus the desire to improve both contacts, and the free flow of informa tion and individuals, to the mutual advantage of both sides.




Fluids, Colloids and Soft Materials


Book Description

This book presents a compilation of self-contained chapters covering a wide range of topics within the broad field of soft condensed matter. Each chapter starts with basic definitions to bring the reader up-to-date on the topic at hand, describing how to use fluid flows to generate soft materials of high value either for applications or for basic research. Coverage includes topics related to colloidal suspensions and soft materials and how they differ in behavior, along with a roadmap for researchers on how to use soft materials to study relevant physics questions related to geometrical frustration.







Multiple Scattering in Solids


Book Description

A description of general techniques for solving linear partial differential equations by dividing space into regions to which the equations are independently applied and then assembling a global solution from the partial ones. Intended for researchers and graduates involved in calculations of the electronic structure of materials, this will also be of interest to workers in quantum chemistry, electron microscopy, acoustics, optics, and other fields. The book begins with an intuitive approach to scattering theory and then turns to partial waves and a formal development of multiple scattering theory, with applications to the solid state. The authors then present a variational derivation of the formalism and an augmented version of the theory, concluding with a discussion of the relativistic formalism and a discussion of the Poisson equation. Appendices discuss Green's functions, spherical functions, Moller operators and the Lippmann-Schwinger equation, irregular solutions, and singularities in Green's functions.




Soft-Matter Characterization


Book Description

This 2-volume set includes extensive discussions of scattering techniques (light, neutron and X-ray) and related fluctuation and grating techniques that are at the forefront of this field. Most of the scattering techniques are Fourier space techniques. Recent advances have seen the development of powerful direct imaging methods such as atomic force microscopy and scanning probe microscopy. In addition, techniques that can be used to manipulate soft matter on the nanometer scale are also in rapid development. These include the scanning probe microscopy technique mentioned above as well as optical and magnetic tweezers.







Scattering of Light by Crystals


Book Description

This authoritative graduate-level text describes inelastic light scattering by crystals and its use in the investigation of solid-state excitation, with experimental techniques common to all types of excitation. 1978 edition.




Scattering and Localization of Classical Waves in Random Media


Book Description

The past decade has witnessed breakthroughs in the understanding of the wave localization phenomena and its implications for wave multiple scattering in inhomogeneous media. This book brings together review articles written by noted researchers in this field in a tutorial manner so as to give the readers a coherent picture of its status. It would be valuable both as an up-to-date reference for active researchers as well as a readable source for students looking to gain an understanding of the latest results.




Interaction of Electromagnetic Field with Condensed Matter


Book Description

This book covers a wide range of topics on the interaction of alternating magnetic field with condensed matter, including superradiant process, proton echo, gamma resonance, scattering of light by condensed matter near critical points, electromagnetically induced phase transitions and some mathematical problems describing the phenomena mentioned.




Condensed Matter Field Theory


Book Description

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.