Theory of Magnetic and Electric Susceptibilities for Optical Frequencies


Book Description

Introduces an original model of the interaction between light and matter. Explains the new optical magnitudes, such as magnetic and electric susceptibilities for optical frequencies, and shows how they can obtain new correlations between the index of refraction and absorption of light, and molecular structure. The basic principle is that a substanc




Modern Nonlinear Optics, Volume 119, Part 3


Book Description

Significant advances have occurred in the field since the previous edition, including advances in light squeezing, single photon optics, phase conjugation, and laser technology. The laser is essentially responsible for nonlinear effects and is extensively used in all branches of science, industry, and medicine.




Glasses for Photonics


Book Description

This book is an introduction to recent progress in the development and application of glass with special photonics properties. Glass has a number of structural and practical advantages over crystalline materials, including excellent homogeneity, variety of form and size, and the potential for doping with a variety of dopant materials. Glasses with photonic properties have great potential and are expected to play a significant role in the next generation of multimedia systems. Fundamentals of glass materials are explained in the first chapter, and the book then proceeds to a discussion of gradient index glass, laser glasses, nonlinear optical glasses and magneto-optical glasses. Beginning with the basic theory, the book discusses actual problems, performance and applications of glasses. The book will be of value to graduate students, researchers and professional engineers working in materials science, chemistry and physics with an interest in photonics and glass with special properties.




Contemporary Nonlinear Optics


Book Description

Contemporary Nonlinear Optics discusses the different activities in the field of nonlinear optics. The book is comprised of 10 chapters. Chapter 1 presents a description of the field of nonlinear guided-wave optics. Chapter 2 surveys a new branch of nonlinear optics under the heading optical solitons. Chapter 3 reviews recent progress in the field of optical phase conjugation. Chapter 4 discusses ultrafast nonlinear optics, a field that is growing rapidly with the ability of generating and controlling femtosecond optical pulses. Chapter 5 examines a branch of nonlinear optics that may be termed nonlinear quantum optics. Chapter 6 reviews the new field of photorefractive adaptive neural networks. Chapter 7 presents a discussion of recent successes in the development of nonlinear optical media based on organic materials. Chapter 8 reviews the field of nonlinear optics in quantum confined structures. Chapter 9 reviews the field of nonlinear laser spectroscopy, with emphasis on advances made during the 1980s. Finally, Chapter 10 reviews the field of nonlinear optical dynamics by considering nonlinear optical systems that exhibit temporal, spatial, or spatio-temporal instabilities. This book is a valuable source for physicists and other scientists interested in optical systems and neural networks.




Transformation Electromagnetics and Metamaterials


Book Description

Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices. Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications presents a comprehensive treatment of the rapidly growing area of transformation electromagnetics and related metamaterial technology with contributions on the subject provided by a collection of leading experts from around the world. On the theoretical side, the following questions will be addressed: “Where does transformation electromagnetics come from?,” “What are the general material properties for different classes of coordinate transformations?,” “What are the limitations and challenges of device realizations?,” and “What theoretical tools are available to make the coordinate transformation-based designs more amenable to fabrication using currently available techniques?” The comprehensive theoretical treatment will be complemented by device designs and/or realizations in various frequency regimes and applications including acoustic, radio frequency, terahertz, infrared, and the visible spectrum. The applications encompass invisibility cloaks, gradient-index lenses in the microwave and optical regimes, negative-index superlenses for sub-wavelength resolution focusing, flat lenses that produce highly collimated beams from an embedded antenna or optical source, beam concentrators, polarization rotators and splitters, perfect electromagnetic absorbers, and many others. This book will serve as the authoritative reference for students and researchers alike to the fast-evolving and exciting research area of transformation electromagnetics/optics, its application to the design of revolutionary new devices, and their associated metamaterial realizations.




The Quantum Theory of Nonlinear Optics


Book Description

This self-contained treatment of field quantization requires no prior knowledge of nonlinear optics. Supplemented by end-of-chapter exercises and detailed examples of calculation techniques in different systems, it is a valuable resource for graduate students and researchers in nonlinear optics, condensed matter physics, quantum information and atomic physics.




Dielectric and Related Molecular Processes


Book Description

Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued.




Physics of Nonlinear Optics


Book Description

Nonlinear optics has been a rapidly growing field in recent decades. It is based on the study of effects and phenomena related to the interaction of intense coherent light radiation with matter. Physics of Nonlinear Optics describes various major nonlinear optical effects, including physical principles, experimental techniques, up-to-date research achievements, and current or potential applications. This book features clear conceptual descriptions, concise formulations, and emphasizes both theoretical and experimental aspects of nonlinear optics. The readability of this book is particularly enhanced by a series of color photographs showing the spectacular appearances of various nonlinear optical effects. Both authors of this book are outstanding research scientists renowned in their professional areas. Their major research achievements in nonlinear optics include the pioneering studies of two-wave-coupled refractive-index change, Raman-enhanced self-focusing, optical-frequency Pockels effect, stimulated Kerr scattering, optical phase-conjugation via backward stimulated emission, and two-photon-absorption based optical limiting, stabilization and reshaping.




Spin Waves


Book Description

This book presents a collection of problems in spin wave excitations with their detailed solutions. Each chapter briefly introduces the important concepts, encouraging the reader to further explore the physics of spin wave excitations and the engineering of spin wave devices by working through the accompanying problem sets. The initial chapters cover the fundamental aspects of magnetization, with its origins in quantum mechanics, followed by chapters on spin wave excitations, such as the magnetostatic approximation, Walker's equation, the spin wave manifold in the three different excitation geometries of forward volume, backward volume and surface waves, and the dispersion of spin waves. The latter chapters focus on the practical aspects of spin waves and spin wave optical devices and use the problem sets to introduce concepts such as variational analysis and coupled mode theory. Finally, for the more advanced reader, the book covers nonlinear interactions and topics such as spin wave quantization, spin torque excitations, and the inverse Doppler effect. The topics range in difficulty from elementary to advanced. All problems are solved in detail and the reader is encouraged to develop an understanding of spin wave excitations and spin wave devices while also strengthening their mathematical, analytical, and numerical programming skills.