Theory of Magnetic Resonance


Book Description

Mathematical and quantum-mechanical background. General two-spin (1/2, 1/2) system. NMR two-spin (1/2, 1/2) system. ESR two-spin (1/2, 1/2) system. Anisotropic hamiltonians. Multispin systems. High-spin systems. Mossbauer resonance. Atomic spectra and crystal field theory. Lineshapes. Double resonance. Electron-nuclear double resonance. Electron-electron double resonance. Dynamic polarization. Nuclear-nuclear double resonance. Acoustic, muon, and optical magnetic resonance. Spin labels. Fourier transform nuclear magnetic resonance. Physical constants and energy conversion factors.




Magnetic Resonance Imaging


Book Description

Presents an overall analytical treatment of MRI physics and engineering. Special attention is paid to the treatment of intrinsic artefacts of the different sequences which can be described for the different scan methods. The book contains many images, especially showing specific properties of the different scan methods. The methods discussed include RARE, GRASE, EPI and Spiral Scan. The 3rd edition deals with stranger gradient and new RF coil systems, and sequences such as Balanced FFE and q-space diffusion imaging and SENSE.




Magnetic Resonance Imaging


Book Description

This comprehensive survey of the analytical treatment of MRI physics and engineering brings the reader to a position to cope with the problems that arise when applying MRI to medical problems or when (sub)systems or sequences for new applications are designed.




Magnetic Resonance Imaging


Book Description

This book is intended as a text/reference for students, researchers, and professors interested in physical and biomedical applications of Magnetic Resonance Imaging (MRI). Both the theoretical and practical aspects of MRI are emphasized. The book begins with a comprehensive discussion of the Nuclear Magnetic Resonance (NMR) phenomenon based on quantum mechanics and the classical theory of electromagnetism. The first three chapters of this book provide the foundation needed to understand the basic characteristics of MR images, e.g.,image contrast, spatial resolution, signal-to-noise ratio, common image artifacts. Then MRI applications are considered in the following five chapters. Both the theoretical and practical aspects of MRI are emphasized. The book ends with a discussion of instrumentation and the principles of signal detection in MRI. Clear progression from fundamental physical principles of NMR to MRI and its applications Extensive discussion of image acquisition and reconstruction of MRI Discussion of different mechanisms of MR image contrast Mathematical derivation of the signal-to-noise dependence on basic MR imaging parameters as well as field strength In-depth consideration of artifacts in MR images Comprehensive discussion of several techniques used for rapid MR imaging including rapid gradient-echo imaging, echo-planar imaging, fast spin-echo imaging and spiral imaging Qualitative discussion combined with mathematical description of MR techniques for imaging flow




Magnetic Resonance Image Reconstruction


Book Description

Magnetic Resonance Image Reconstruction: Theory, Methods and Applications presents the fundamental concepts of MR image reconstruction, including its formulation as an inverse problem, as well as the most common models and optimization methods for reconstructing MR images. The book discusses approaches for specific applications such as non-Cartesian imaging, under sampled reconstruction, motion correction, dynamic imaging and quantitative MRI. This unique resource is suitable for physicists, engineers, technologists and clinicians with an interest in medical image reconstruction and MRI. Explains the underlying principles of MRI reconstruction, along with the latest research“/li> Gives example codes for some of the methods presented Includes updates on the latest developments, including compressed sensing, tensor-based reconstruction and machine learning based reconstruction




Magnetic Resonance Imaging


Book Description

New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.




Theory of Magnetic Resonance


Book Description

Mathematical and quantum-mechanical background. General two-spin (1/2, 1/2) system. NMR two-spin (1/2, 1/2) system. ESR two-spin (1/2, 1/2) system. Anisotropic hamiltonians. Multispin systems. High-spin systems. Mossbauer resonance. Atomic spectra and crystal field theory. Lineshapes. Double resonance. Electron-nuclear double resonance. Electron-electron double resonance. Dynamic polarization. Nuclear-nuclear double resonance. Acoustic, muon, and optical magnetic resonance. Spin labels. Fourier transform nuclear magnetic resonance. Physical constants and energy conversion factors.




Handbook of Magnetic Resonance Spectroscopy In Vivo


Book Description

This handbook covers the entire field of magnetic resonance spectroscopy (MRS), a unique method that allows the non-invasive identification, quantification and spatial mapping of metabolites in living organisms–including animal models and patients. Comprised of three parts: Methodology covers basic MRS theory, methodology for acquiring, quantifying spectra, and spatially localizing spectra, and equipment essentials, as well as vital ancillary issues such as motion suppression and physiological monitoring. Applications focuses on MRS applications, both in animal models of disease and in human studies of normal physiology and disease, including cancer, neurological disease, cardiac and muscle metabolism, and obesity. Reference includes useful appendices and look up tables of relative MRS signal-to-noise ratios, typical tissue concentrations, structures of common metabolites, and useful formulae. About eMagRes Handbooks eMagRes (formerly the Encyclopedia of Magnetic Resonance) publishes a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of eMagRes articles. In consultation with the eMagRes Editorial Board, the eMagRes Handbooks are coherently planned in advance by specially-selected Editors, and new articles are written to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this handbook and the complete content of eMagRes at your fingertips! Visit the eMagRes Homepage




Theory and Interpretation of Magnetic Resonance Spectra


Book Description

It is amazing how much information can be gleaned from a magnetic resonance spectrum by one who knows. That series of lines on chart paper may conceal anything from energies of activation and spin densities, to conformations and differentiation of isomers. In order to be able to deduce such things about the structure and properties of molecules in a sample, it is necessary to be familiar with the underlying principles, and to arrive at that state of understanding is not easy. This book was conceived and written in an attempt to clarify what is necessary theoretical equipment for anyone wishing to extract the maximum information from a magnetic resonance spectrum. It is also written for those who will find a fascination and great satisfaction in the way this subject, which involves so many sides of modern physics, holds together. It seems to the author, from experience, that the difficulty of getting to grips with the theory of magnetism and magnetic resonance is two sided. On the one hand one has forgotten, or never really known, the principles of electromagnetism on which it is based, and on the other, detailed analysis of the spectra requires a certain facility with the operator techniques of quantum mechanics. In both cases the principle difficulty appears to be unfamiliarity, so the chief aim in this book will be to introduce the enquirer to the relevent language in a reasonably connected fashion.




Relaxation in Magnetic Resonance


Book Description

Relaxation in Magnetic Resonance contains a series of lecture notes for a special topics course at the University of South Carolina in 1967. This book contains 21 chapters that summarize the main theoretical formulations and experimental results of magnetic resonance relaxation phenomena in several physical systems. This text deals first with the various methods in determining the relaxation behavior of the macroscopic spin system, such as Bloch equations, saturation methods, and transient resonant absorption. The subsequent chapters discuss the homogeneous and inhomogeneous resonant lines in solids and liquids and the significance of the Kubo-Tomita and Redfield theories in magnetic resonance. This book then considers the background research on electron spin resonance and relaxation in ionic solids. The concluding chapters explore the acoustic absorption coefficient and dielectric constant calculation; the relaxation processes in paramagnetic substance; and the characteristics of Mössbauer spectra and their application in magnetic relaxation. This book will be useful to both graduate students embarking upon thesis problems in relaxation and more advanced workers who seek an overall summary of the status of the field, as well as to physicists and chemists.