Theory of Parallel Mechanisms


Book Description

This book contains mechanism analysis and synthesis. In mechanism analysis, a mobility methodology is first systematically presented. This methodology, based on the author's screw theory, proposed in 1997, of which the generality and validity was only proved recently, is a very complex issue, researched by various scientists over the last 150 years. The principle of kinematic influence coefficient and its latest developments are described. This principle is suitable for kinematic analysis of various 6-DOF and lower-mobility parallel manipulators. The singularities are classified by a new point of view, and progress in position-singularity and orientation-singularity is stated. In addition, the concept of over-determinate input is proposed and a new method of force analysis based on screw theory is presented. In mechanism synthesis, the synthesis for spatial parallel mechanisms is discussed, and the synthesis method of difficult 4-DOF and 5-DOF symmetric mechanisms, which was first put forward by the author in 2002, is introduced in detail. Besides, the three-order screw system and its space distribution of the kinematic screws for infinite possible motions of lower mobility mechanisms are both analyzed.




Analysis and Synthesis of Compliant Parallel Mechanisms—Screw Theory Approach


Book Description

This book addresses the design of compliant mechanisms, presenting readers with a good understanding of both the solid mechanics of flexible elements and their configuration design, based on a mechanism-equivalent approach in the framework of screw theory. The book begins with the theoretical background of screw theory, and systematically addresses both the compliance characteristics of flexible elements and their configuration design. The book then covers a broad range of compliant parallel mechanism design topics, from stiffness to constraint decomposition, from conceptual design to dimensional design, and from analysis to synthesis, as well as the large deformation problem; this is followed by both simulations and physical experiments, offering readers a solid foundation and useful tools. Given its scope and the results it presents, the book will certainly benefit and inform future research on the topic. It offers a valuable asset for researchers, developers, engineers and graduate students with an interest in compliant mechanisms, robotics and screw theory.




Type Synthesis of Parallel Mechanisms


Book Description

This unique monograph focuses on the systematic type synthesis of parallel mechanisms (PMs), a key issue in the creative design of a wide variety of innovative devices such as parallel manipulators, motion simulators, and haptic devices. Essential reading for researchers, developers, engineers and graduate students with interests in robotics, this book covers the classification of PMs as well as providing a large number of PMs ready to be used in practical applications.




Analysis and Synthesis of Compliant Parallel Mechanisms--screw Theory Approach


Book Description

This book addresses the design of compliant mechanisms, presenting readers with a good understanding of both the solid mechanics of flexible elements and their configuration design, based on a mechanism-equivalent approach in the framework of screw theory. The book begins with the theoretical background of screw theory, and systematically addresses both the compliance characteristics of flexible elements and their configuration design. The book then covers a broad range of compliant parallel mechanism design topics, from stiffness to constraint decomposition, from conceptual design to dimensional design, and from analysis to synthesis, as well as the large deformation problem; this is followed by both simulations and physical experiments, offering readers a solid foundation and useful tools. Given its scope and the results it presents, the book will certainly benefit and inform future research on the topic. It offers a valuable asset for researchers, developers, engineers and graduate students with an interest in compliant mechanisms, robotics and screw theory.




Parallel Kinematics


Book Description

Parallel Kinematics- Type, Kinematics, and Optimal Design presents the results of 15 year's research on parallel mechanisms and parallel kinematics machines. This book covers the systematic classification of parallel mechanisms (PMs) as well as providing a large number of mechanical architectures of PMs available for use in practical applications. It focuses on the kinematic design of parallel robots. One successful application of parallel mechanisms in the field of machine tools, which is also called parallel kinematics machines, has been the emerging trend in advanced machine tools. The book describes not only the main aspects and important topics in parallel kinematics, but also references novel concepts and approaches, i.e. type synthesis based on evolution, performance evaluation and optimization based on screw theory, singularity model taking into account motion and force transmissibility, and others. This book is intended for researchers, scientists, engineers and postgraduates or above with interests in robotics and advanced machine tools technology such as parallel kinematics machines (PKMs). Xinjun Liu and Jinsong Wang, professors, work at The Institute of Manufacturing Engineering, Department of Precision Instruments and Mechanology, Tsinghua University.




New Trends in Mechanism and Machine Science


Book Description

This book collects the most recent advances in mechanism science and machine theory with application to engineering. It contains selected peer-reviewed papers of the sixth International Conference on Mechanism Science, held in Nantes, France, 20-23 September 2016, covering topics on mechanism design and synthesis, mechanics of robots, mechanism analysis, parallel manipulators, tensegrity mechanisms, cable mechanisms, control issues in mechanical systems, history of mechanisms, mechanisms for biomechanics and surgery and industrial and nonindustrial applications.




Advances in Robot Kinematics 2018


Book Description

This is the proceedings of ARK 2018, the 16th International Symposium on Advances in Robot Kinematics, that was organized by the Group of Robotics, Automation and Biomechanics (GRAB) from the University of Bologna, Italy. ARK are international symposia of the highest level organized every two years since 1988. ARK provides a forum for researchers working in robot kinematics and stimulates new directions of research by forging links between robot kinematics and other areas.The main topics of the symposium of 2018 were: kinematic analysis of robots, robot modeling and simulation, kinematic design of robots, kinematics in robot control, theories and methods in kinematics, singularity analysis, kinematic problems in parallel robots, redundant robots, cable robots, over-constrained linkages, kinematics in biological systems, humanoid robots and humanoid subsystems.




Parallel Robots


Book Description

Parallel robots are closed-loop mechanisms presenting very good performances in terms of accuracy, rigidity and ability to manipulate large loads. Parallel robots have been used in a large number of applications ranging from astronomy to flight simulators and are becoming increasingly popular in the field of machine-tool industry. This book presents a complete synthesis of the latest results on the possible mechanical architectures, analysis and synthesis of this type of mechanism. It is intended to be used by students (with over 100 exercises and numerous Internet addresses), researchers (with over 500 references and anonymous ftp access to the code of some algorithms presented in this book) and engineers (for which practical results and applications are presented).




Parallel Manipulators of Robots


Book Description

This book describes the theoretical framework of parallel manipulators and presents examples of their application. The theoretical part begins with the theory of parallel manipulator synthesis. Working on this basis, various topology designs of one-loop and multiloop parallel manipulators are then obtained. The next section describes the zero parameters method for the analysis of mechanism (manipulator) structure with closed kinematic circuits, and includes examples of its application, highlighting its advantages compared to traditional methods. The book then presents the redundant parameters method for determining the position of special parallel manipulator links, and discusses its application in solving the direct problem of link position for multiloop manipulators. It also addresses one-loop and multiloop manipulators, and includes a solution for the direct and inverse link position problems of kinematics. In closing, the book presents a range of potential applications for parallel manipulator. These examples are intended to promote the development and implementation of new engineering solutions, e.g. in seismic protection systems, renewable energy and other areas. The book includes a wealth of material that can be used for teaching undergraduate, graduate and PhD students majoring in robotics, automation and related fields, and can also be used by researchers to solve problems in connection with introducing robotics technologies.




New Trends in Mechanism and Machine Science


Book Description

This book contains the papers of the European Conference on Mechanisms Science (EUCOMES 2012 Conference). The book presents the most recent research developments in the mechanism and machine science field and their applications. Topics addressed are theoretical kinematics, computational kinematics, mechanism design, experimental mechanics, mechanics of robots, dynamics of machinery, dynamics of multi-body systems, control issues of mechanical systems, mechanisms for biomechanics, novel designs, mechanical transmissions, linkages and manipulators, micro-mechanisms, teaching methods, history of mechanism science and industrial and non-industrial applications. This volume will also serve as an interesting reference for the European activity in the fields of Mechanism and Machine Science as well as a source of inspirations for future works and developments.