Computability


Book Description

What can computers do in principle? What are their inherent theoretical limitations? The theoretical framework which enables such questions to be answered has been developed over the last fifty years from the idea of a computable function - a function whose values can be calculated in an automatic way.




Theories of Computability


Book Description

A mathematically sophisticated introduction to Turing's theory, Boolean functions, automata, and formal languages.










Computability


Book Description

What can computers do in principle? What are their inherent theoretical limitations? These are questions to which computer scientists must address themselves. The theoretical framework which enables such questions to be answered has been developed over the last fifty years from the idea of a computable function: intuitively a function whose values can be calculated in an effective or automatic way. This book is an introduction to computability theory (or recursion theory as it is traditionally known to mathematicians). Dr Cutland begins with a mathematical characterisation of computable functions using a simple idealised computer (a register machine); after some comparison with other characterisations, he develops the mathematical theory, including a full discussion of non-computability and undecidability, and the theory of recursive and recursively enumerable sets. The later chapters provide an introduction to more advanced topics such as Gödel's incompleteness theorem, degrees of unsolvability, the Recursion theorems and the theory of complexity of computation. Computability is thus a branch of mathematics which is of relevance also to computer scientists and philosophers. Mathematics students with no prior knowledge of the subject and computer science students who wish to supplement their practical expertise with some theoretical background will find this book of use and interest.




Computability Theory


Book Description

Computability Theory: An Introduction provides information pertinent to the major concepts, constructions, and theorems of the elementary theory of computability of recursive functions. This book provides mathematical evidence for the validity of the Church–Turing thesis. Organized into six chapters, this book begins with an overview of the concept of effective process so that a clear understanding of the effective computability of partial and total functions is obtained. This text then introduces a formal development of the equivalence of Turing machine computability, enumerability, and decidability with other formulations. Other chapters consider the formulas of the predicate calculus, systems of recursion equations, and Post's production systems. This book discusses as well the fundamental properties of the partial recursive functions and the recursively enumerable sets. The final chapter deals with different formulations of the basic ideas of computability that are equivalent to Turing-computability. This book is a valuable resource for undergraduate or graduate students.




An Introduction to Gödel's Theorems


Book Description

In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic.




Turing Computability


Book Description

Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author has honed the content over decades according to feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic.