Theory of the Nuclear Magnetic 1/T1 Relaxation Rate in Conventional and Unconventional Magnets


Book Description

One of the best ways to "lift the lid" on what is happening inside a given material is to study it using nuclear magnetic resonance (NMR). Of particular interest are NMR 1/T1 relaxation rates, which measure how fast energy stored in magnetic nuclei is transferred to surrounding electrons. This thesis develops a detailed, quantitative theory of NMR 1/T1 relaxation rates, and shows for the first time how they could be used to measure the speed at which energy travels in a wide range of magnetic materials. This theory is used to make predictions for"Quantum Spin Nematics", an exotic form of quantum order analogous to a liquid crystal. In order to do so, it is first necessary to unravel how spin nematics transport energy. This thesis proposes a new way to do this, based on the description of quarks in high-energy physics. Experiments to test the ideas presented are now underway in laboratories across the world.




Magnetism and Superconductivity in Iron-based Superconductors as Probed by Nuclear Magnetic Resonance


Book Description

Nuclear Magnetic Resonance (NMR) has been a fundamental player in the studies of superconducting materials for many decades. This local probe technique allows for the study of the static electronic properties as well as of the low energy excitations of the electrons in the normal and the superconducting state. On that account it has also been widely applied to Fe-based superconductors from the very beginning of their discovery in February 2008. This dissertation comprises some of these very first NMR results, reflecting the unconventional nature of superconductivity and its strong link to magnetism in the investigated compounds LaO1–xFxFeAs and LiFeAs.




Superconductivity


Book Description

Superconductivity was discovered in 1911 by Kamerlingh Onnes. Since the discovery of an oxide superconductor with critical temperature (Tc) approximately equal to 35 K (by Bednorz and Muller 1986), there are a great number of laboratories all over the world involved in research of superconductors with high Tc values, the so-called "High-Tc superconductors". This book contains 15 chapters reporting about interesting research about theoretical and experimental aspects of superconductivity. You will find here a great number of works about theories and properties of High-Tc superconductors (materials with Tc > 30 K). In a few chapters there are also discussions concerning low-Tc superconductors (Tc




Introduction to Frustrated Magnetism


Book Description

The field of highly frustrated magnetism has developed considerably and expanded over the last 15 years. Issuing from canonical geometric frustration of interactions, it now extends over other aspects with many degrees of freedom such as magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. Its is thus shown here that the concept of frustration impacts on many other fields in physics than magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, encompassing solid-state chemistry, experimental and theoretical physics.




Critical Current Limitation In High Temperature Superconductors


Book Description

This volume will focus on the theory and experiments leading to quantitative understanding of the magnetic field and temperature dependence of critical current densities in high-temperature superconductors. Topics will include: critical currents and flux-pinning, flux flow and flux creep, anisotropy of critical fields and currents, properties of the flux lattice and the irreversibility line, magnetization, granularity.







Chemical Abstracts


Book Description




Superconductivity


Book Description

This extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in superconductivity. Covering the entire field, this unparalleled resource carefully blends theoretical studies with experimental results to provide an indispensable foundation for further research. Leading researchers, including Nobel laureates, describe the state of the art in conventional and unconventional superconductors. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued, intense research into electron-phone based superconductivity.




Spectroscopic Properties of Inorganic and Organometallic Compounds


Book Description

Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr