Thermal Properties of Solids at Room and Cryogenic Temperatures


Book Description

The minimum temperature in the natural universe is 2.7 K. Laboratory refrigerators can reach temperatures in the microkelvin range. Modern industrial refrigerators cool foods at 200 K, whereas space mission payloads must be capable of working at temperatures as low as 20 K. Superconducting magnets used for NMR work at 4.2 K. Hence the properties of materials must be accurately known also at cryogenic temperatures. This book provides a guide for engineers, physicists, chemists, technicians who wish to approach the field of low-temperature material properties. The focus is on the thermal properties and a large spectrum of experimental cases is reported. The book presents updated tables of low-temperature data on materials and a thorough bibliography supplements any further research. Key Features include: ° Detailed technical description of experiments ° Description of the newest cryogenic apparatus ° Offers data on cryogenic properties of the latest new materials ° Current reference review




NBS Monograph


Book Description










Cryocoolers 11


Book Description

Composed of papers written by leading engineers and scientists in the field, this valuable collection reports the most recent advances in cryocooler development, contains extensive performance test results and comparisons, and relates the latest experience in integrating cryocoolers into advanced applications.




NBS Special Publication


Book Description




Physics of Cryogenics


Book Description

Physics of Cryogenics: An Ultralow Temperature Phenomenon discusses the significant number of advances that have been made during the last few years in a variety of cryocoolers, such as Brayton, Joule-Thomson, Stirling, pulse tube, Gifford-McMahon and magnetic refrigerators. The book reviews various approaches taken to improve reliability, a major driving force for new research areas. The advantages and disadvantages of different cycles are compared, and the latest improvements in each of these cryocoolers is discussed. The book starts with the thermodynamic fundamentals, followed by the definition of cryogenic and the associated science behind low temperature phenomena and properties. This book is an ideal resource for scientists, engineers and graduate and senior undergraduate students who need a better understanding of the science of cryogenics and related thermodynamics. - Defines the fundamentals of thermodynamics that are associated with cryogenic processes - Provides an overview of the history of the development of cryogenic technology - Includes new, low temperature tables written by the author - Deals with the application of cryogenics to preserve objects at very low temperature - Explains how cryogenic phenomena work for human cell and human body preservations and new medical approaches




Low-temperature Thermal And Vibrational Properties Of Disordered Solids: A Half-century Of Universal "Anomalies" Of Glasses


Book Description

This book, edited by M. A. Ramos and contributed by several reputed physicists in the field, presents a timely review on low-temperature thermal and vibrational properties of glasses, and of disordered solids in general. In 1971, the seminal work of Zeller and Pohl was published, which triggered this relevant research field in condensed matter physics. Hence, this book also commemorates about 50 years of that highlight with a comprehensive, updated review.In brief, glasses (firstly genuine amorphous solids but later on followed by different disordered crystals) were found to universally exhibit low-temperature properties (specific heat, thermal conductivity, acoustic and dielectric attenuation, etc.) unexpectedly very similar among them — and very different from those of their crystalline counterparts.These universal 'anomalies' of glasses and other disordered solids remain very controversial topics in condensed matter physics. They have been addressed exhaustively in this book, through many updated experimental data, a survey of most relevant models and theories, as well as by computational simulations.