Heat Capacity and Thermal Expansion at Low Temperatures


Book Description

The birth of this monograph is partly due to the persistent efforts of the General Editor, Dr. Klaus Timmerhaus, to persuade the authors that they encapsulate their forty or fifty years of struggle with the thermal properties of materials into a book before they either expired or became totally senile. We recognize his wisdom in wanting a monograph which includes the closely linked properties of heat capacity and thermal expansion, to which we have added a little 'cement' in the form of elastic moduli. There seems to be a dearth of practitioners in these areas, particularly among physics postgraduate students, sometimes temporarily alleviated when a new generation of exciting materials are found, be they heavy fermion compounds, high temperature superconductors, or fullerenes. And yet the needs of the space industry, telecommunications, energy conservation, astronomy, medical imaging, etc. , place demands for more data and understanding of these properties for all classes of materials - metals, polymers, glasses, ceramics, and mixtures thereof. There have been many useful books, including Specific Heats at Low Tempera tures by E. S. Raja Gopal (1966) in this Plenum Cryogenic Monograph Series, but few if any that covered these related topics in one book in a fashion designed to help the cryogenic engineer and cryophysicist. We hope that the introductory chapter will widen the horizons of many without a solid state background but with a general interest in physics and materials.







Low-energy Excitations In Disordered Solids: A Story Of The 'Universal' Phenomena Of Structural Tunneling


Book Description

The subject of low-energy excitations has evolved since two-level-tunneling systems were first proposed ~50 years ago. Initially they were used to explain the common anomalous properties of oxide glasses and polymers; now the subject includes a wide range of other materials containing disorder: amorphous semiconductors and metals, doped- mixed- and quasi-crystals, surface adsorbates, ... and topics such as dephasing of quantum states and interferometer noise. A fairly simple empirical description using a remarkably small range of parameters serves well to describe the effect of these excitations, but the structures causing these effects are known in only a few materials and the reasons for their similarity across disparate materials has only been qualitatively addressed.This book provides a unified, comprehensive description of tunneling systems in disordered solids suitable for graduate students/researchers wishing an introduction to the field. Its focus is on the tunneling systems intrinsic to glassy solids. It describes the experimental observations of 'glassy' properties, develops the basic empirical tunneling model, and discusses the dynamics changes on cooling to temperatures where direct excitation interactions become important and on heating to where tunneling gives way to thermal activation. Finally, it discusses how theories of glass formation can help us understand the ubiquity of these excitations.The Development of the basic tunneling model is the core of the book and is worked out in considerable detail. To keep the total within bounds of our expertise and the readers' patience, many related experimental and theoretical developments are only sketched out here; the text is heavily cited to allow readers to follow their specific interests in much more depth.




Thermal Expansion of Solids


Book Description

Provides a detailed examination of theory and techniques in thermal expansion of solids. Subjects include a generalized theory, estimation techniques and selected effects, temperature measurements in solids, thermal expansion by X-ray diffraction, high sensitivity expansivity measurement techniques,




GaAs and Related Materials


Book Description

This book covers the various material properties of bulk GaAs and related materials, and aspects of the physics of artificial semiconductor microstructures, such as quantum wells and superlattices, made of these materials. A complete set of the material properties are considered in this book. They are structural properties; thermal properties; elastic and lattice vibronic properties; collective effects and some response characteristics; electronic energy-band structure and consequences; optical, elasto-optic, and electro-optic properties; and carrier transport properties. This book attempts to summarize, in graphical and tabular forms, most of the important theoretical and experimental results on these material properties. It contains a large number of references useful for further study. Timely topics are discussed as well. This book will be of interest to graduate students, scientists and engineers working on semiconductors.




Physics of Ice


Book Description

Ice is one of the most abundant and environmentally important materials on Earth, and its unique and intriguing physical properties present fascinating areas of study for a wide variety of researchers. This book is about the physics of ice, by which is meant the properties of the material itself and the ways in which these properties are interpreted in terms of water molecules and crystalline structure. Although ice has a simple crystal structure its hydrogen bonding results in unique properties, which continue to be the subject of active research. In this book the physical principles underlying the properties of ice are carefully developed at a level aimed at pure and applied researchers in the field. Important topics like current understandings of the electrical, mechanical, and surface properties, and the occurrence of many different crystalline phases are developed in a coherent way for the first time. An extensive reference list and numerous illustrations add to the usefulness and readability of the text.




Thermal Expansion 8


Book Description




Zentropy


Book Description

This book compiles selected publications authored or co-authored by the editor to present a comprehensive understanding of following topics: (1) fundamentals of thermodynamics, Materials GenomeĀ®, and zentropy theory; (2) zentropy theory for prediction of positive and negative thermal expansions. It is noted that while entropy at one scale is well represented by standard statistical mechanics in terms of probability of individual configurations at that scale, the theory capable of counting total entropy of a system from different scales is lacking. The zentropy theory provides a nested form for configurational entropy enabling multiscale modeling to account for disorder and fluctuations from the electronic scale based on quantum mechanics to the experimental scale based on statistical mechanics using free energies of individual configurations rather than their total energies in standard statistical mechanics. The predictions from the zentropy theory demonstrate remarkable agreements with experimental observations for magnetic transitions and associated emergent behaviors of strongly correlated metals and oxides, including singularity and instability at critical points and positive and negative thermal expansions, without the need of additional truncated models and fitting model parameters beyond density function theory. This paves the way to provide the predicted phase equilibrium data for high throughput predictive CALPHAD modeling of complex material systems, and those individual configurations may thus be considered as the genomic building blocks of individual phases in the spirit of Materials GenomeĀ®.




Thermal Expansion 8


Book Description




Progress in Low Temperature Physics


Book Description

Progress in Low Temperature Physics