Thermal Power Plant


Book Description

Thermal Power Plant: Design and Operation deals with various aspects of a thermal power plant, providing a new dimension to the subject, with focus on operating practices and troubleshooting, as well as technology and design. Its author has a 40-long association with thermal power plants in design as well as field engineering, sharing his experience with professional engineers under various training capacities, such as training programs for graduate engineers and operating personnel. Thermal Power Plant presents practical content on coal-, gas-, oil-, peat- and biomass-fueled thermal power plants, with chapters in steam power plant systems, start up and shut down, and interlock and protection. Its practical approach is ideal for engineering professionals. Focuses exclusively on thermal power, addressing some new frontiers specific to thermal plants Presents both technology and design aspects of thermal power plants, with special treatment on plant operating practices and troubleshooting Features a practical approach ideal for professionals, but can also be used to complement undergraduate and graduate studies




Thermal Power Plant


Book Description

Thermal Power Plants: Pre-Operational Activities covers practical information that can be used as a handy reference by utility operators and professionals working in new and existing plants, including those that are undergoing refurbishments and those that have been shut for long periods of time. It is fully comprehensive, including chapters on flushing boiler systems, various methods of testing steam generators, and the drying out of generators. This book will be invaluable for anyone working on the startup, commissioning, and operation of thermal power plants. It is also a great companion book to Sarkar's Thermal Power Plant: Design and Operation. Sarkar has worked with thermal power plants for over 40 years, bringing his experience in design and operations to help new and experienced practicing engineers perform effective pre-operational activities. - Consolidates all pre-operational aspects of thermal power plants - Explains how to handle equipment safely and work efficiently - Provides guidance for new and existing power plants to help reduce outage time and save on budgets




An Introduction to Thermal Power Plant Engineering and Operation


Book Description

This book is intended to meet the requirements of the fresh engineers on the field to endow them with indispensable information, technical know-how to work in the power plant industries and its associated plants. The book provides a thorough understanding and the operating principles to solve the elementary and the difficult problems faced by the modern young engineers while working in the industries. This book is written on the basis of ‘hands-on’ experience, sound and in-depth knowledge gained by the authors during their experiences faced while working in this field. The problem generally occurs in the power plants during operation and maintenance. It has been explained in a lucid language.




Thermal Power Plant Performance Analysis


Book Description

The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan. Taking in view that the power plant performance can be evaluated not only based on thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: · selection of critical equipment and components, · definition of maintenance plans, mainly for auxiliary systems, and · execution of decision analysis based on risk concepts. The comprehensive presentation of each analysis allows future application of the methodology making Thermal Power Plant Performance Analysis a key resource for undergraduate and postgraduate students in mechanical and nuclear engineering.




Modeling and Simulation of Thermal Power Plants with ThermoSysPro


Book Description

This book explains the modelling and simulation of thermal power plants, and introduces readers to the equations needed to model a wide range of industrial energy processes. Also featuring a wealth of illustrative, real-world examples, it covers all types of power plants, including nuclear, fossil-fuel, solar and biomass. The book is based on the authors’ expertise and experience in the theory of power plant modelling and simulation, developed over many years of service with EDF. In more than forty examples, they demonstrate the component elements involved in a broad range of energy production systems, with detailed test cases for each chemical, thermodynamic and thermo-hydraulic model. Each of the test cases includes the following information: • component description and parameterization data; • modelling hypotheses and simulation results; • fundamental equations and correlations, with their validity domains; • model validation, and in some cases, experimental validation; and • single-phase flow and two-phase flow modelling equations, which cover all water and steam phases. A practical volume that is intended for a broad readership, from students and researchers, to professional engineers, this book offers the ideal handbook for the modelling and simulation of thermal power plants. It is also a valuable aid in understanding the physical and chemical phenomena that govern the operation of power plants and energy processes.




Thermal Power Plants


Book Description

Thermal Power Plants: Modeling, Control, and Efficiency Improvement explains how to solve highly complex industry problems regarding identification, control, and optimization through integrating conventional technologies, such as modern control technology, computational intelligence-based multiobjective identification and optimization, distributed computing, and cloud computing with computational fluid dynamics (CFD) technology. Introducing innovative methods utilized in industrial applications, explored in scientific research, and taught at leading academic universities, this book: Discusses thermal power plant processes and process modeling, energy conservation, performance audits, efficiency improvement modeling, and efficiency optimization supported by high-performance computing integrated with cloud computing Shows how to simulate fossil fuel power plant real-time processes, including boiler, turbine, and generator systems Provides downloadable source codes for use in CORBA C++, MATLAB®, Simulink®, VisSim, Comsol, ANSYS, and ANSYS Fluent modeling software Although the projects in the text focus on industry automation in electrical power engineering, the methods can be applied in other industries, such as concrete and steel production for real-time process identification, control, and optimization.




Numerical Simulation for Next Generation Thermal Power Plants


Book Description

The book provides highly specialized researchers and practitioners with a major contribution to mathematical models’ developments for energy systems. First, dynamic process simulation models based on mixture flow and two-fluid models are developed for combined-cycle power plants, pulverised coal-fired power plants, concentrated solar power plant and municipal waste incineration. Operation data, obtained from different power stations, are used to investigate the capability of dynamic models to predict the behaviour of real processes and to analyse the influence of modeling assumptions on simulation results. Then, a computational fluid dynamics (CFD) simulation programme, so-called DEMEST, is developed. Here, the fluid-solid, particle-particle and particle-wall interactions are modeled by tracking all individual particles. To this purpose, the deterministic Euler-Lagrange/Discrete Element Method (DEM) is applied and further improved. An emphasis is given to the determination of inter-phase values, such as volumetric void fraction, momentum and heat transfers, using a new procedure known as the offset-method and to the particle-grid method allowing the refinement of the grid resolution independently from particle size. Model validation is described in detail. Moreover, thermochemical reaction models for solid fuel combustion are developed based on quasi-single-phase, two-fluid and Euler-Lagrange/MP-PIC models. Measurements obtained from actual power plants are used for validation and comparison of the developed numerical models.




Thermal Power Plant Simulation and Control


Book Description

An exploration of how advances in computing technology and research can be combined to extend the capabilities and economics of modern power plants. The contributors, from academia as well as practising engineers, illustrate how the various methodologies can be applied to power plant operation.




Fundamentals of Thermal and Nuclear Power Generation


Book Description

Fundamentals of Thermal and Nuclear Power Generation is the first volume in the JSME Series in Thermal and Nuclear Power Generation. The first part of this volume provides a thorough and complete reference on the history of thermal and nuclear power generation, which has informed and sculpted today's industry. It prepares readers for subsequent publications in the series that address more advanced topics and will particularly benefit early career researchers and those approaching the industry from an alternative discipline. Modern thermal and nuclear power generation systems and technologies are then explored, including clear analysis on the fundamentals of thermodynamics, hydrodynamics, thermal engineering, combustion engineering, and nuclear physics. The impact of these technologies on society is considered throughout, as well as supply issues, accident risk analysis, and important emission and sustainability considerations. This book is an invaluable resource for researchers and professional engineers in nuclear and thermal energy engineering, and postgraduate and undergraduate students in power generation, especially nuclear and thermal. Written by experts from the leaders and pioneers in thermal and nuclear power engineering research at the Japanese Society of Mechanical Engineers and draws upon their combined wealth of knowledge and experience Includes real examples and case studies from Japan and other key regions such as the United States and Europe to provide a deeper learning opportunity Considers societal impact and sustainability concerns and goals throughout




Operation and Maintenance of Thermal Power Stations


Book Description

This book illustrates operation and maintenance practices/guidelines for economic generation and managing health of a thermal power generator beyond its regulatory life. The book provides knowledge for professionals managing power station operations, through its unique approach to chemical analysis of water, steam, oil etc. to identify malfunctioning/defects in equipment/systems much before the physical manifestation of the problem. The book also contains a detailed procedure for conducting performance evaluation tests on different equipment, and for analyzing test results for predicting maintenance requirements, which has lent a new dimension to power systems operation and maintenance practices. A number of real life case studies also enrich the book. This book will prove particularly useful to power systems operations professionals in the developing economies, and also to researchers and students involved in studying power systems operations and control.