Nanofluid Heat and Mass Transfer in Engineering Problems


Book Description

In the present book, nanofluid heat and mass transfer in engineering problems are investigated. The use of additives in the base fluid like water or ethylene glycol is one of the techniques applied to augment heat transfer. Newly, innovative nanometer-sized particles have been dispersed in the base fluid in heat transfer fluids. The fluids containing the solid nanometer-sized particle dispersion are called "nanofluids." At first, nanofluid heat and mass transfer over a stretching sheet are provided with various boundary conditions. Problems faced for simulating nanofluids are reported. Also, thermophysical properties of various nanofluids are presented. Nanofluid flow and heat transfer in the presence of magnetic field are investigated. Furthermore, applications for electrical and biomedical engineering are provided. Besides, applications of nanofluid in internal combustion engine are provided.




Nanofluidics


Book Description

This volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed. This book also: Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical thermodynamics to explain and interpret experimental observations Presents the theory and experimental results for both thermodynamic and transport properties Examines all transport properties and transport processes as well as their relationships through the pertinent macroscopic coefficients Combines recent knowledge pertaining to nanofluids with the previous fifty years of research on particulate flows, including research on transient flow and heat transfer of particulate suspensions Conducts an holistic examination of the material from more than 500 archival publications




Nanofluids


Book Description

Introduction to nanofluids--their properties, synthesis, characterization, and applications Nanofluids are attracting a great deal of interest with their enormous potential to provide enhanced performance properties, particularly with respect to heat transfer. In response, this text takes you on a complete journey into the science and technology of nanofluids. The authors cover both the chemical and physical methods for synthesizing nanofluids, explaining the techniques for creating a stable suspension of nanoparticles. You get an overview of the existing models and experimental techniques used in studying nanofluids, alongside discussions of the challenges and problems associated with some of these models. Next, the authors set forth and explain the heat transfer applications of nanofluids, including microelectronics, fuel cells, and hybrid-powered engines. You also get an introduction to possible future applications in large-scale cooling and biomedicine. This book is the work of leading pioneers in the field, one of whom holds the first U.S. patent for nanofluids. They have combined their own first-hand knowledge with a thorough review of theliterature. Among the key topics are: * Synthesis of nanofluids, including dispersion techniques and characterization methods * Thermal conductivity and thermo-physical properties * Theoretical models and experimental techniques * Heat transfer applications in microelectronics, fuel cells, and vehicle engines This text is written for researchers in any branch of science and technology, without any prerequisite.It therefore includes some basic information describing conduction, convection, and boiling of nanofluids for those readers who may not have adequate background in these areas. Regardless of your background, you'll learn to develop nanofluids not only as coolants, but also for a host ofnew applications on the horizon.




Nanofluids


Book Description

Nanofluids: Mathematical, Numerical and Experimental Analysis provides a combined treatment of the numerical and experimental aspects of this crucial topic. Mathematical methods such as the weighted residual method and perturbation techniques, as well as numerical methods such as Finite Element and Lattice-Boltzmann are addressed, along with experimental methods in nanofluid analysis. The effects of magnetic field, electric field and solar radiation on the optical properties and synthesis of nanofluid flow are examined and discussed as well. This book also functions as a comprehensive review of recent progress in nanofluids analysis and its application in different engineering sciences. This book is ideal for all readers in industry or academia, along with anyone interested in nanofluids for theoretical or experimental design reasons. - Explains the governing equations in which magnetic or electric fields are applied - Gives instructions on how to confirm numerical modeling results by comparing with experimental outcomes - Provides detailed information on the governing equations where nanofluids are used as a working fluid




Nanocomposite Science and Technology


Book Description

In recent years, nanocomposites have captured and held the attention and imagination of scientists and engineers alike. Based on the simple premise that by using a wide range of building blocks with dimensions in the nanosize region, it is possible to design and create new materials with unprecedented flexibility and improvements in their physical properties. This book contains the essence of this emerging technology, the underlying science and motivation behind the design of these structures and the future, particularly from the perspective of applications. It is intended to be a reference handbook for future scientists and hence carries the basic science and the fundamental engineering principles that lead to the fabrication and property evaluation of nanocomposite materials in different areas of materials science and technology.




Heat Transfer Enhancement with Nanofluids


Book Description

Nanofluids are gaining the attention of scientists and researchers around the world. This new category of heat transfer medium improves the thermal conductivity of fluid by suspending small solid particles within it and offers the possibility of increased heat transfer in a variety of applications. Bringing together expert contributions from




Preparation, Characterization, Properties, and Application of Nanofluid


Book Description

Preparation, Characterization, Properties and Application of Nanofluid begins with an introduction of colloidal systems and their relation to nanofluid. Special emphasis on the preparation of stable nanofluid and the impact of ultrasonication power on nanofluid preparation is also included, as are characterization and stability measurement techniques. Other topics of note in the book include the thermophysical properties of nanofluids as thermal conductivity, viscosity, and density and specific heat, including the figure of merit of properties. In addition, different parameters, like particle type, size, concentration, liquid type and temperature are discussed based on experimental results, along with a variety of other important topics. The available model and correlations used for nanofluid property calculation are also included. - Provides readers with tactics on nanofluid preparation methods, including how to improve their stability - Explores the effect of preparation method and stability on thermophysical and rheological properties of nanofluids - Assesses the available model and correlations used for nanofluid property calculation




Thermal Performance of Nanofluids in Miniature Heat Sinks with Conduits


Book Description

This comprehensive book focuses on the basic physical features and purpose of nanofluids and miniature heat sinks. The contents demonstrate the design modification, fabrication, experimental investigation, and various applications of miniature heat sinks. The book provides context for thermal performance of miniature heat sinks as well as summaries of experimental results correlations that reflect the current technical innovations are included. This book is a useful reference for both academia and industry alike.




Hybrid Nanofluids


Book Description

Hybrid Nanofluids: Preparation, Characterization and Applications presents the history of hybrid nanofluids, preparation techniques, thermoelectrical properties, rheological behaviors, optical properties, theoretical modeling and correlations, and the effect of all these factors on potential applications, such as solar energy, electronics cooling, heat exchangers, machining, and refrigeration. Future challenges and future work scope have also been included. The information from this book enables readers to discover novel techniques, resolve existing research limitations, and create novel hybrid nanofluids which can be implemented for heat transfer applications. Describes the characterization, thermophysical and electrical properties of nanofluids Assesses parameter selection and property measurement techniques for the calibration of thermal performance Provides information on theoretical models and correlations for predicting hybrid nanofluids properties from experimental properties




Materials, Design, and Manufacturing for Sustainable Environment


Book Description

This book comprises the select proceedings of the International Conference on Materials, Design and Manufacturing for Sustainable Environment (ICMDMSE 2020). The primary focus is on emerging materials and cutting-edge manufacturing technologies for sustainable environment. The book covers a wide range of topics such as advanced materials, vibration, tribology, finite element method (FEM), heat transfer, fluid mechanics, energy engineering, additive manufacturing, robotics and automation, automobile engineering, industry 4.0, MEMS and nanotechnology, optimization techniques, condition monitoring, and new paradigms in technology management. Contents of this book will be useful to students, researchers, and practitioners alike.