Materials at Low Temperatures


Book Description




Heat Capacity and Thermal Expansion at Low Temperatures


Book Description

The birth of this monograph is partly due to the persistent efforts of the General Editor, Dr. Klaus Timmerhaus, to persuade the authors that they encapsulate their forty or fifty years of struggle with the thermal properties of materials into a book before they either expired or became totally senile. We recognize his wisdom in wanting a monograph which includes the closely linked properties of heat capacity and thermal expansion, to which we have added a little 'cement' in the form of elastic moduli. There seems to be a dearth of practitioners in these areas, particularly among physics postgraduate students, sometimes temporarily alleviated when a new generation of exciting materials are found, be they heavy fermion compounds, high temperature superconductors, or fullerenes. And yet the needs of the space industry, telecommunications, energy conservation, astronomy, medical imaging, etc. , place demands for more data and understanding of these properties for all classes of materials - metals, polymers, glasses, ceramics, and mixtures thereof. There have been many useful books, including Specific Heats at Low Tempera tures by E. S. Raja Gopal (1966) in this Plenum Cryogenic Monograph Series, but few if any that covered these related topics in one book in a fashion designed to help the cryogenic engineer and cryophysicist. We hope that the introductory chapter will widen the horizons of many without a solid state background but with a general interest in physics and materials.




ASM Ready Reference


Book Description

A quick and easy to use source for qualified thermal properties of metals and alloys. The data tables are arranged by material hierarchy, with summary tables sorted by property value. Values are given for a range of high and low temperatures. Short technical discussions at the beginning of each chapter are designed to refresh the reader's understanding of the properties and units covered in that section










Thermal Properties of Solids at Room and Cryogenic Temperatures


Book Description

The minimum temperature in the natural universe is 2.7 K. Laboratory refrigerators can reach temperatures in the microkelvin range. Modern industrial refrigerators cool foods at 200 K, whereas space mission payloads must be capable of working at temperatures as low as 20 K. Superconducting magnets used for NMR work at 4.2 K. Hence the properties of materials must be accurately known also at cryogenic temperatures. This book provides a guide for engineers, physicists, chemists, technicians who wish to approach the field of low-temperature material properties. The focus is on the thermal properties and a large spectrum of experimental cases is reported. The book presents updated tables of low-temperature data on materials and a thorough bibliography supplements any further research. Key Features include: ° Detailed technical description of experiments ° Description of the newest cryogenic apparatus ° Offers data on cryogenic properties of the latest new materials ° Current reference review




Specific Heats at Low Temperatures


Book Description

This work was begun quite some time ago at the University of Oxford during the tenure of an Overseas Scholarship of the Royal Commission for the Exhibition of 1851 and was completed at Banga lore when the author was being supported by a maintenance allowance from the CSIR Pool for unemployed scientists. It is hoped that significant developments taking place as late as the beginning of 1965 have been incorporated. The initial impetus and inspiration for the work came from Dr. K. Mendelssohn. To him and to Drs. R. W. Hill and N. E. Phillips, who went through the whole of the text, the author is obliged in more ways than one. For permission to use figures and other materials, grateful thanks are tendered to the concerned workers and institutions. The author is not so sanguine as to imagine that all technical and literary flaws have been weeded out. If others come across them, they may be charitably brought to the author's notice as proof that physics has become too vast to be comprehended by a single onlooker. E. S. RAJA GoPAL Department of Physics Indian Institute of Science Bangalore 12, India November 1965 v Contents Introduction ................................................................. .




Thermal Conductivity


Book Description

It has been almost thirty years since the publication of a book that is entirely dedicated to the theory, description, characterization and measurement of the thermal conductivity of solids. The recent discovery of new materials which possess more complex crystal structures and thus more complicated phonon scattering mechanisms have brought innovative challenges to the theory and experimental understanding of these new materials. With the development of new and novel solid materials and new measurement techniques, this book will serve as a current and extensive resource to the next generation researchers in the field of thermal conductivity. This book is a valuable resource for research groups and special topics courses (8-10 students), for 1st or 2nd year graduate level courses in Thermal Properties of Solids, special topics courses in Thermal Conductivity, Superconductors and Magnetic Materials, and to researchers in Thermoelectrics, Thermal Barrier Materials and Solid State Physics.




Helium Cryogenics


Book Description

Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspects of helium fluids to provide a source for engineers and scientists to enhance their usefulness in low-temperature systems. Dr. Van Sciver is a Distinguished Research Professor and John H. Gorrie Professor of Mechanical Engineering at Florida State University. He is also a Program Director at the National High Magnetic Field Laboratory (NHMFL). Dr. Van Sciver joined the FAMU-FSU College of Engineering and the NHMFL in 1991, initiating and teaching a graduate program in magnet and materials engineering and in cryogenic thermal sciences and heat transfer. He also led the NHMFL development efforts of the cryogenic systems for the NHMFL Hybrid and 900 MHz NMR superconducting magnets. Between 1997 and 2003, he served as Director of Magnet Science and Technology at the NHMFL. Dr. Van Sciver is a Fellow of the ASME and the Cryogenic Society of America and American Editor for the journal Cryogenics. He is the 2010 recipient of the Kurt Mendelssohn Award. Prior to joining Florida State University, Dr. Van Sciver was Research Scientist and then Professor of Nuclear Engineering, Engineering Physics and Mechanical Engineering at the University of Wisconsin-Madison from 1976 to 1991. During that time he also served as the Associate Director of the Applied Superconductivity Center. Dr. Van Sciver received his PhD in Low Temperature Physics from the University of Washington-Seattle in 1976. He received his BS degree in Engineering Physics from Lehigh University in 1970. Dr. Van Sciver is author of over 200 publications and patents in low temperature physics, liquid helium technology, cryogenic engineering and magnet technology. The first edition of Helium Cryogenics was published by Plenum Press (1986). The present work is an update and expansion of that original project.