Thermal Stability Enhancement of JP-5


Book Description

The objective of this work was to determine if C60 or its derivatives could enhance the oxidative thermal stability of JP-5 and similar aviation fuels. Two derivatives of C60 were prepared, n-hexyl amine and di-isopropylamine. Several conventional thermal stressing experiments were also performed: oxygen overpressure (OOP), isothermal corrosion oxidation test (ICOT), quartz crystal microbalance (QCM), and hot liquid process simulator (HLPS). In addition, a fuel stability test system (FSTS) developed at Advanced Fuel Research, Inc. (AFR) was also used. The FSTS includes fiber optic infrared transmission cells to assess fuel thermal stability during thermal stressing up to 500 deg C. The low temperature data from OOP, ICOT, QCM and HPLS show that pure C60 generally reduces the deposit formation, although the amount of this reduction is only modest (between 5 and 30%). The beneficial effects are larger under more severe conditions (higher temperatures, longer oxidation times, higher oxygen concentrations). The FSTS results were consistent with this trend, although at the highest temperatures (425-500 deg C), some potentially deleterious effects of C60 also appear to be enhanced. The effects of reactor tube activation were important for the FSTS. Additional work is warranted on exploring the beneficial effects of C60 addition which could serve to extent the operating range of common jet fuels.










WADC Technical Report


Book Description







Scramjet Propulsion


Book Description

Scramjet Propulsion Explore the cutting edge of HAP technologies with this comprehensive resource from an international leader in her field Scramjet Propulsion: A Practical Introduction delivers a comprehensive treatment of hypersonic air breathing propulsion and its applications. The book covers the most up-to-date hypersonic technologies, like endothermic fuels, fuel injection and flameholding systems, high temperature materials, and TPS, and offers technological overviews of hypersonic flight platforms like the X-43A, X-51A, and HiFIRE. It is organized around easy-to-understand explanations of technical challenges and provides extensive references for the information contained within. The highly accomplished author provides readers with a fulsome description of the theoretical underpinnings of hypersonic technologies, as well as critical design and technology issues affecting hypersonic air breathing propulsion technologies. The book’s combination of introductory theory and advanced instruction about individual hypersonic engine components is ideal for students and practitioners in fields as diverse as hypersonic vehicle and propulsion development for missile defense technologies, launch aerospaceplanes, and civilian transports. Over 250 illustrations and tables round out the material. Readers will also learn from: A thorough introduction to hypersonic flight, hypersonic vehicle concepts, and a review of fundamental principles in hypersonic air breathing propulsion Explorations of the aerothermodynamics of scramjet engines and the design of scramjet components, as well as hypersonic air breathing propulsion combustors and fuels Analyses of dual-mode combustion phenomena, materials structures, and thermal management in hypersonic vehicles, and combined cycle propulsion An examination of CFD analysis, ground and flight testing, and simulation Perfect for researchers and graduate students in aerospace engineering, Scramjet Propulsion: A Practical Introduction is also an indispensable addition to the libraries of engineers working on hypersonic vehicle development seeking a state-of-the-art resource in one of the most potentially disruptive areas of aerospace research today.







ASME Technical Papers


Book Description